

AoPS Community

2012 India National Olympiad

India National Olympiad 2012

www.artofproblemsolving.com/community/c4938 by Sahil, Learner94, adihaya, Potla

_	February 5th
1	Let $ABCD$ be a quadrilateral inscribed in a circle. Suppose $AB = \sqrt{2 + \sqrt{2}}$ and AB subtends 135 degrees at center of circle. Find the maximum possible area of $ABCD$.
2	Let $p_1 < p_2 < p_3 < p_4$ and $q_1 < q_2 < q_3 < q_4$ be two sets of prime numbers, such that $p_4 - p_1 = 8$ and $q_4 - q_1 = 8$. Suppose $p_1 > 5$ and $q_1 > 5$. Prove that 30 divides $p_1 - q_1$.
3	Define a sequence $< f_0(x), f_1(x), f_2(x), \dots >$ of functions by
	$f_0(x) = 1$
	$f_1(x) = x$
	$(f_n(x))^2 - 1 = f_{n+1}(x)f_{n-1}(x)$
	for $n \ge 1$. Prove that each $f_n(x)$ is a polynomial with integer coefficients.
4	Let ABC be a triangle. An interior point P of ABC is said to be <i>good</i> if we can find exactly 27 rays emanating from P intersecting the sides of the triangle ABC such that the triangle is divided by these rays into 27 <i>smaller triangles of equal area.</i> Determine the number of good points for a given triangle ABC .
5	Let <i>ABC</i> be an acute angled triangle. Let <i>D</i> , <i>E</i> , <i>F</i> be points on <i>BC</i> , <i>CA</i> , <i>AB</i> such that <i>AD</i> is the median, <i>BE</i> is the internal bisector and <i>CF</i> is the altitude. Suppose that $\angle FDE = \angle C$, $\angle DEF = \angle A$ and $\angle EFD = \angle B$. Show that <i>ABC</i> is equilateral.
6	Let $f: \mathbb{Z} \to \mathbb{Z}$ be a function satisfying $f(0) \neq 0$, $f(1) = 0$ and
	(i)f(xy) + f(x)f(y) = f(x) + f(y)
	(ii) (f(x - y) - f(0)) f(x) f(y) = 0
	for all $x, y \in \mathbb{Z}$, simultaneously.

(a) Find the set of all possible values of the function f.

(b) If $f(10) \neq 0$ and f(2) = 0, find the set of all integers n such that $f(n) \neq 0$.