AoPS Community

India National Olympiad 2012

www.artofproblemsolving.com/community/c4938 by Sahil, Learner94, adihaya, Potla

- February 5th

1 Let $A B C D$ be a quadrilateral inscribed in a circle. Suppose $A B=\sqrt{2+\sqrt{2}}$ and $A B$ subtends 135 degrees at center of circle. Find the maximum possible area of $A B C D$.

2 Let $p_{1}<p_{2}<p_{3}<p_{4}$ and $q_{1}<q_{2}<q_{3}<q_{4}$ be two sets of prime numbers, such that $p_{4}-p_{1}=8$ and $q_{4}-q_{1}=8$. Suppose $p_{1}>5$ and $q_{1}>5$. Prove that 30 divides $p_{1}-q_{1}$.

3 Define a sequence $<f_{0}(x), f_{1}(x), f_{2}(x), \cdots>$ of functions by

$$
\begin{gathered}
f_{0}(x)=1 \\
f_{1}(x)=x \\
\left(f_{n}(x)\right)^{2}-1=f_{n+1}(x) f_{n-1}(x)
\end{gathered}
$$

for $n \geq 1$. Prove that each $f_{n}(x)$ is a polynomial with integer coefficients.
4 Let $A B C$ be a triangle. An interior point P of $A B C$ is said to be good if we can find exactly 27 rays emanating from P intersecting the sides of the triangle $A B C$ such that the triangle is divided by these rays into 27 smaller triangles of equal area. Determine the number of good points for a given triangle $A B C$.
$5 \quad$ Let $A B C$ be an acute angled triangle. Let D, E, F be points on $B C, C A, A B$ such that $A D$ is the median, $B E$ is the internal bisector and $C F$ is the altitude. Suppose that $\angle F D E=$ $\angle C, \angle D E F=\angle A$ and $\angle E F D=\angle B$. Show that $A B C$ is equilateral.
$6 \quad$ Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function satisfying $f(0) \neq 0, f(1)=0$ and
(i) $f(x y)+f(x) f(y)=f(x)+f(y)$
(ii) $(f(x-y)-f(0)) f(x) f(y)=0$
for all $x, y \in \mathbb{Z}$, simultaneously.
(a) Find the set of all possible values of the function f.
(b) If $f(10) \neq 0$ and $f(2)=0$, find the set of all integers n such that $f(n) \neq 0$.

