

AoPS Community

India National Olympiad 2013

www.artofproblemsolving.com/community/c4939 by Potla, Learner94

- February 3rd
- 1 Let Γ_1 and Γ_2 be two circles touching each other externally at R. Let O_1 and O_2 be the centres of Γ_1 and Γ_2 , respectively. Let ℓ_1 be a line which is tangent to Γ_2 at P and passing through O_1 , and let ℓ_2 be the line tangent to Γ_1 at Q and passing through O_2 . Let $K = \ell_1 \cap \ell_2$. If KP = KQthen prove that the triangle PQR is equilateral.
- **2** Find all $m, n \in \mathbb{N}$ and primes $p \ge 5$ satisfying

$$m(4m^2 + m + 12) = 3(p^n - 1).$$

- **3** Let $a, b, c, d \in \mathbb{N}$ such that $a \ge b \ge c \ge d$. Show that the equation $x^4 ax^3 bx^2 cx d = 0$ has no integer solution.
- **4** Let *N* be an integer greater than 1 and let T_n be the number of non empty subsets *S* of $\{1, 2, ..., n\}$ with the property that the average of the elements of *S* is an integer. Prove that $T_n n$ is always even.
- **5** In an acute triangle ABC, let O, G, H be its circumcentre, centroid and orthocenter. Let $D \in BC, E \in CA$ and $OD \perp BC, HE \perp CA$. Let F be the midpoint of AB. If the triangles ODC, HEA, GFB have the same area, find all the possible values of $\angle C$.
- **6** Let a, b, c, x, y, z be six positive real numbers satisfying x + y + z = a + b + c and xyz = abc. Further, suppose that $a \le x < y < z \le c$ and a < b < c. Prove that a = x, b = y and c = z.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.