AoPS Community

India National Olympiad 2013

www.artofproblemsolving.com/community/c4939
by Potla, Learner94

- February 3rd

1 Let Γ_{1} and Γ_{2} be two circles touching each other externally at R. Let O_{1} and O_{2} be the centres of Γ_{1} and Γ_{2}, respectively. Let ℓ_{1} be a line which is tangent to Γ_{2} at P and passing through O_{1}, and let ℓ_{2} be the line tangent to Γ_{1} at Q and passing through O_{2}. Let $K=\ell_{1} \cap \ell_{2}$. If $K P=K Q$ then prove that the triangle $P Q R$ is equilateral.

2 Find all $m, n \in \mathbb{N}$ and primes $p \geq 5$ satisfying

$$
m\left(4 m^{2}+m+12\right)=3\left(p^{n}-1\right) .
$$

3 Let $a, b, c, d \in \mathbb{N}$ such that $a \geq b \geq c \geq d$. Show that the equation $x^{4}-a x^{3}-b x^{2}-c x-d=0$ has no integer solution.
$4 \quad$ Let N be an integer greater than 1 and let T_{n} be the number of non empty subsets S of $\{1,2, \ldots ., n\}$ with the property that the average of the elements of S is an integer.Prove that $T_{n}-n$ is always even.

5 In an acute triangle $A B C$, let O, G, H be its circumcentre, centroid and orthocenter. Let $D \in$ $B C, E \in C A$ and $O D \perp B C, H E \perp C A$. Let F be the midpoint of $A B$. If the triangles $O D C, H E A, G F B$ have the same area, find all the possible values of $\angle C$.

6 Let a, b, c, x, y, z be six positive real numbers satisfying $x+y+z=a+b+c$ and $x y z=a b c$. Further, suppose that $a \leq x<y<z \leq c$ and $a<b<c$. Prove that $a=x, b=y$ and $c=z$.

