AoPS Community

India National Olympiad 2014

www.artofproblemsolving.com/community/c4940
by shivangjindal, backfromthedead

1 In a triangle $A B C$, let D be the point on the segment $B C$ such that $A B+B D=A C+C D$. Suppose that the points B, C and the centroids of triangles $A B D$ and $A C D$ lie on a circle. Prove that $A B=A C$.

2 Let n be a natural number. Prove that,

$$
\left\lfloor\frac{n}{1}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+\cdots+\left\lfloor\frac{n}{n}\right\rfloor+\lfloor\sqrt{n}\rfloor
$$

is even.
3 Let a, b be natural numbers with $a b>2$. Suppose that the sum of their greatest common divisor and least common multiple is divisble by $a+b$. Prove that the quotient is at most $\frac{a+b}{4}$. When is this quotient exactly equal to $\frac{a+b}{4}$

4 Written on a blackboard is the polynomial $x^{2}+x+2014$. Calvin and Hobbes take turns alternately (starting with Calvin) in the following game. At his turn, Calvin should either increase or decrease the coefficient of x by 1 . And at this turn, Hobbes should either increase or decrease the constant coefficient by 1 . Calvin wins if at any point of time the polynomial on the blackboard at that instant has integer roots. Prove that Calvin has a winning stratergy.

5 In a acute-angled triangle $A B C$, a point D lies on the segment $B C$. Let O_{1}, O_{2} denote the circumcentres of triangles $A B D$ and $A C D$ respectively. Prove that the line joining the circumcentre of triangle $A B C$ and the orthocentre of triangle $O_{1} O_{2} D$ is parallel to $B C$.
$6 \quad$ Let $n>1$ be a natural number. Let $U=\{1,2, \ldots, n\}$, and define $A \Delta B$ to be the set of all those elements of U which belong to exactly one of A and B. Show that $|\mathcal{F}| \leq 2^{n-1}$, where \mathcal{F} is a collection of subsets of U such that for any two distinct elements of A, B of \mathcal{F} we have $|A \Delta B| \geq 2$. Also find all such collections \mathcal{F} for which the maximum is attained.

