AoPS Community

India National Olympiad 2015

www.artofproblemsolving.com/community/c4941
by TripteshBiswas

- February 1st

1 Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let $B D$ is the altitude from B on $A C$. Let P, Q and I be the incenters of triangles $A B D, C B D$ and $A B C$ respectively. Show that circumcenter of triangle $P I Q$ lie on the hypotenuse $A C$.

2 For any natural number $n>1$ write the finite decimal expansion of $\frac{1}{n}$ (for example we write $\frac{1}{2}=0.4 \overline{9}$ as its infinite decimal expansion not 0.5). Determine the length of non-periodic part of the (infinite) decimal expansion of $\frac{1}{n}$.
$3 \quad$ Find all real functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(x^{2}+y f(x)\right)=x f(x+y)$.
4 There are four basketball players A, B, C, D. Initially the ball is with A. The ball is always passed from one person to a different person.
In how many ways can the ball come back to A after seven moves? (for example $A \rightarrow C \rightarrow$ $B \rightarrow D \rightarrow A \rightarrow B \rightarrow C \rightarrow A$, or $A \rightarrow D \rightarrow A \rightarrow D \rightarrow C \rightarrow A \rightarrow B \rightarrow A)$.
$5 \quad$ Let $A B C D$ be a convex quadrilateral.Let diagonals $A C$ and $B D$ intersect at P. Let $P E, P F, P G$ and $P H$ are altitudes from P on the side $A B, B C, C D$ and $D A$ respectively. Show that $A B C D$ has a incircle if and only if $\frac{1}{P E}+\frac{1}{P G}=\frac{1}{P F}+\frac{1}{P H}$.

6 Show that from a set of 11 square integers one can select six numbers $a^{2}, b^{2}, c^{2}, d^{2}, e^{2}, f^{2}$ such that $a^{2}+b^{2}+c^{2} \equiv d^{2}+e^{2}+f^{2}(\bmod 12)$.

