Art of Problem Solving

AoPS Community

Western Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c494188
by Snakes, mofumofu, sqing

- Day 1

1 Let p be a prime and n be a positive integer such that p^{2} divides $\prod_{k=1}^{n}\left(k^{2}+1\right)$. Show that $p<2 n$.

2 Let n be a positive integer such that there exist positive integers $x_{1}, x_{2}, \cdots, x_{n}$ satisfying

$$
x_{1} x_{2} \cdots x_{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=100 n
$$

Find the greatest possible value of n.
3 In triangle $A B C$, let D be a point on $B C$. Let I_{1} and I_{2} be the incenters of triangles $A B D$ and $A C D$ respectively. Let O_{1} and O_{2} be the circumcenters of triangles $A I_{1} D$ and $A I_{2} D$ respectively. Let lines $I_{1} O_{2}$ and $I_{2} O_{1}$ meet at P. Show that $P D \perp B C$.
$4 \quad$ Let n and k be given integers such that $n \geq k \geq 2$. Alice and Bob play a game on an n by n table with white cells. They take turns to pick a white cell and color it black. Alice moves first. The game ends as soon as there is at least one black cell in every k by k square after a player moves, who is declared the winner of the game. Who has the winning strategy?

- Day 2

5 Let $a_{1}, a_{2}, \cdots, a_{9}$ be 9 positive integers (not necessarily distinct) satisfying: for all $1 \leq i<j<$ $k \leq 9$, there exists $l(1 \leq l \leq 9)$ distinct from i, j and j such that $a_{i}+a_{j}+a_{k}+a_{l}=100$. Find the number of 9 -tuples $\left(a_{1}, a_{2}, \cdots, a_{9}\right)$ satisfying the above conditions.

6 In acute triangle $A B C$, let D and E be points on sides $A B$ and $A C$ respectively. Let segments $B E$ and $D C$ meet at point H. Let M and N be the midpoints of segments $B D$ and $C E$ respectively. Show that H is the orthocenter of triangle $A M N$ if and only if B, C, E, D are concyclic and $B E \perp C D$.

7 Let $n=2^{\alpha} \cdot q$ be a positive integer, where α is a nonnegative integer and q is an odd number. Show that for any positive integer m, the number of integer solutions to the equation $x_{1}^{2}+x_{2}^{2}+$ $\cdots+x_{n}^{2}=m$ is divisible by $2^{\alpha+1}$.

8 Let $a_{1}, a_{2}, \cdots, a_{n}>0(n \geq 2)$. Prove that

$$
\sum_{i=1}^{n} \max \left\{a_{1}, a_{2}, \cdots, a_{i}\right\} \cdot \min \left\{a_{i}, a_{i+1}, \cdots, a_{n}\right\} \leq \frac{n}{2 \sqrt{n-1}} \sum_{i=1}^{n} a_{i}^{2}
$$

