

AoPS Community

1986 China Team Selection Test

China Team Selection Test 1986

www.artofproblemsolving.com/community/c4942 by Arne, orl, fleeting_guest, darij grinberg, grobber

Day 1	
1	If $ABCD$ is a cyclic quadrilateral, then prove that the incenters of the triangles ABC , BCD , CDA , DAB are the vertices of a rectangle.
2	Let $a_1, a_2,, a_n$ and $b_1, b_2,, b_n$ be $2 \cdot n$ real numbers. Prove that the following two statements are equivalent:
	i) For any <i>n</i> real numbers $x_1, x_2,, x_n$ satisfying $x_1 \le x_2 \le \le x_n$, we have $\sum_{k=1}^n a_k \cdot x_k \le \sum_{k=1}^n b_k \cdot x_k$,
	ii) We have $\sum_{k=1}^{s} a_k \leq \sum_{k=1}^{s} b_k$ for every $s \in \{1, 2,, n-1\}$ and $\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} b_k$.
3	Given a positive integer A written in decimal expansion: $(a_n, a_{n-1}, \ldots, a_0)$ and let $f(A)$ denote $\sum_{k=0}^{n} 2^{n-k} \cdot a_k$. Define $A_1 = f(A), A_2 = f(A_1)$. Prove that:
	I. There exists positive integer k for which $A_{k+1} = A_k$. II. Find such A_k for 19^{86} .
4	Given a triangle <i>ABC</i> for which $C = 90$ degrees, prove that given n points inside it, we can name them P_1, P_2, \ldots, P_n in some way such that: $\sum_{k=1}^{n-1} (P_K P_{k+1})^2 \leq AB^2$ (the sum is over the consecutive square of the segments from 1 up to $n-1$).
	Edited by orl.
Day 2	
1	Given a square $ABCD$ whose side length is 1, P and Q are points on the sides AB and AD . If the perimeter of APQ is 2 find the angle PCQ .
 2	Given a tetrahedron ABCD, E, F, G, are on the respectively on the segments AB, AC and AD,

2 Given a tetrahedron *ABCD*, *E*, *F*, *G*, are on the respectively on the segments *AB*, *AC* and *AD*. Prove that:

i) area $EFG \leq \max ABC$, area ABD, area ACD, area BCD.

ii) The same as above replacing "area" for "perimeter".

AoPS Community

3 Let $x_i, 1 \le i \le n$ be real numbers with $n \ge 3$. Let p and q be their symmetric sum of degree 1 and 2 respectively. Prove that:

$$i) p^2 \cdot \frac{n-1}{n} - 2q \ge 0$$

ii) $\left|x_i - \frac{p}{n}\right| \le \sqrt{p^2 - \frac{2nq}{n-1}} \cdot \frac{n-1}{n}$ for every meaningful *i*.

4 Mark $4 \cdot k$ points in a circle and number them arbitrarily with numbers from 1 to $4 \cdot k$. The chords cannot share common endpoints, also, the endpoints of these chords should be among the $4 \cdot k$ points.

i. Prove that $2 \cdot k$ pairwisely non-intersecting chords can be drawn for each of whom its endpoints differ in at most $3 \cdot k - 1$.

ii. Prove that the $3 \cdot k - 1$ cannot be improved.

Act of Problem Solving is an ACS WASC Accredited School.