Art of Problem Solving

AoPS Community

China Team Selection Test 1988

www.artofproblemsolving.com/community/c4944
by orl, Singular, darij grinberg, zhaoli, pbornsztein

Day 1

1 Suppose real numbers A, B, C such that for all real numbers x, y, z the following inequality holds:

$$
A(x-y)(x-z)+B(y-z)(y-x)+C(z-x)(z-y) \geq 0
$$

Find the necessary and sufficient condition A, B, C must satisfy (expressed by means of an equality or an inequality).

2 Find all functions $f: \mathbb{Q} \mapsto \mathbb{C}$ satisfying
(i) For any $x_{1}, x_{2}, \ldots, x_{1988} \in \mathbb{Q}, f\left(x_{1}+x_{2}+\ldots+x_{1988}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{1988}\right)$.
(ii) $\overline{f(1988)} f(x)=f(1988) \overline{f(x)}$ for all $x \in \mathbb{Q}$.

3 In triangle $A B C, \angle C=30^{\circ}, O$ and I are the circumcenter and incenter respectively, Points $D \in A C$ and $E \in B C$, such that $A D=B E=A B$. Prove that $O I=D E$ and $O I \perp D E$.

4 Let $k \in \mathbb{N}, S_{k}=\{(a, b) \mid a, b=1,2, \ldots, k\}$. Any two elements $(a, b),(c, d) \in S_{k}$ are called "undistinguishing" in S_{k} if $a-c \equiv 0$ or $\pm 1(\bmod k)$ and $b-d \equiv 0$ or $\pm 1(\bmod k)$; otherwise, we call them "distinguishing". For example, $(1,1)$ and $(2,5)$ are undistinguishing in S_{5}. Considering the subset A of S_{k} such that the elements of A are pairwise distinguishing. Let r_{k} be the maximum possible number of elements of A.
(i) Find r_{5}.
(ii) Find r_{7}.
(iii) Find r_{k} for $k \in \mathbb{N}$.

Day 2

1 Let $f(x)=3 x+2$. Prove that there exists $m \in \mathbb{N}$ such that $f^{100}(m)$ is divisible by 1988.
2 Let $A B C D$ be a trapezium $A B / / C D, M$ and N are fixed points on $A B, P$ is a variable point on $C D$. $E=D N \cap A P, F=D N \cap M C, G=M C \cap P B, D P=\lambda \cdot C D$. Find the value of λ for which the area of quadrilateral $P E F G$ is maximum.

3 A polygon Π is given in the $O X Y$ plane and its area exceeds n. Prove that there exist $n+1$ points $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right), \ldots, P_{n+1}\left(x_{n+1}, y_{n+1}\right)$ in \prod such that $\forall i, j \in\{1,2, \ldots, n+1\}, x_{j}-x_{i}$ and $y_{j}-y_{i}$ are all integers.

4 There is a broken computer such that only three primitive data $c, 1$ and -1 are reserved. Only allowed operation may take u and v and output $u \cdot v+v$. At the beginning, $u, v \in\{c, 1,-1\}$. After then, it can also take the value of the previous step (only one step back) besides $\{c, 1,-1\}$. Prove that for any polynomial $P_{n}(x)=a_{0} \cdot x^{n}+a_{1} \cdot x^{n-1}+\ldots+a_{n}$ with integer coefficients, the value of $P_{n}(c)$ can be computed using this computer after only finite operation.

