

AoPS Community

China Team Selection Test 1988

www.artofproblemsolving.com/community/c4944 by orl, Singular, darij grinberg, zhaoli, pbornsztein

Day 1

1 Suppose real numbers A, B, C such that for all real numbers x, y, z the following inequality holds:

$$A(x-y)(x-z) + B(y-z)(y-x) + C(z-x)(z-y) \ge 0.$$

Find the necessary and sufficient condition *A*, *B*, *C* must satisfy (expressed by means of an equality or an inequality).

2 Find all functions $f : \mathbb{Q} \mapsto \mathbb{C}$ satisfying

(i) For any $x_1, x_2, \ldots, x_{1988} \in \mathbb{Q}$, $f(x_1 + x_2 + \ldots + x_{1988}) = f(x_1)f(x_2) \ldots f(x_{1988})$.

(ii) $\overline{f(1988)}f(x) = f(1988)\overline{f(x)}$ for all $x \in \mathbb{Q}$.

- **3** In triangle ABC, $\angle C = 30^{\circ}$, O and I are the circumcenter and incenter respectively, Points $D \in AC$ and $E \in BC$, such that AD = BE = AB. Prove that OI = DE and $OI \perp DE$.
- **4** Let $k \in \mathbb{N}$, $S_k = \{(a, b) | a, b = 1, 2, ..., k\}$. Any two elements (a, b), $(c, d) \in S_k$ are called "undistinguishing" in S_k if $a c \equiv 0$ or $\pm 1 \pmod{k}$ and $b d \equiv 0$ or $\pm 1 \pmod{k}$; otherwise, we call them "distinguishing". For example, (1, 1) and (2, 5) are undistinguishing in S_5 . Considering the subset A of S_k such that the elements of A are pairwise distinguishing. Let r_k be the maximum possible number of elements of A.

(i) Find r_5 . (ii) Find r_7 . (iii) Find r_k for $k \in \mathbb{N}$.

Day 2	
1	Let $f(x) = 3x + 2$. Prove that there exists $m \in \mathbb{N}$ such that $f^{100}(m)$ is divisible by 1988.
2	Let <i>ABCD</i> be a trapezium <i>AB</i> // <i>CD</i> , <i>M</i> and <i>N</i> are fixed points on <i>AB</i> , <i>P</i> is a variable point on <i>CD</i> . $E = DN \cap AP$, $F = DN \cap MC$, $G = MC \cap PB$, $DP = \lambda \cdot CD$. Find the value of λ for which the area of quadrilateral <i>PEFG</i> is maximum.

AoPS Community

1988 China Team Selection Test

- **3** A polygon \prod is given in the *OXY* plane and its area exceeds *n*. Prove that there exist n + 1 points $P_1(x_1, y_1), P_2(x_2, y_2), \ldots, P_{n+1}(x_{n+1}, y_{n+1})$ in \prod such that $\forall i, j \in \{1, 2, \ldots, n+1\}, x_j x_i$ and $y_j y_i$ are all integers.
- 4 There is a broken computer such that only three primitive data c, 1 and -1 are reserved. Only allowed operation may take u and v and output $u \cdot v + v$. At the beginning, $u, v \in \{c, 1, -1\}$. After then, it can also take the value of the previous step (only one step back) besides $\{c, 1, -1\}$. Prove that for any polynomial $P_n(x) = a_0 \cdot x^n + a_1 \cdot x^{n-1} + \ldots + a_n$ with integer coefficients, the value of $P_n(c)$ can be computed using this computer after only finite operation.

Act of Problem Solving is an ACS WASC Accredited School.