AoPS Community

China Team Selection Test 1990
www.artofproblemsolving.com/community/c4946
by orl, Singular, grobber, enescu, darij grinberg, harazi

Day 1

1 In a wagon, every $m \geq 3$ people have exactly one common friend. (When A is B 's friend, B is also A 's friend. No one was considered as his own friend.) Find the number of friends of the person who has the most friends.

2 Finitely many polygons are placed in the plane. If for any two polygons of them, there exists a line through origin O that cuts them both, then these polygons are called "properly placed". Find the least $m \in \mathbb{N}$, such that for any group of properly placed polygons, m lines can drawn through O and every polygon is cut by at least one of these m lines.

3 In set S, there is an operation " ${ }^{\prime \prime}$ " such that $\forall a, b \in S$, a unique $a \circ b \in S$ exists. And
(i) $\forall a, b, c \in S,(a \circ b) \circ c=a \circ(b \circ c)$.
(ii) $a \circ b \neq b \circ a$ when $a \neq b$.

Prove that:
a.) $\forall a, b, c \in S,(a \circ b) \circ c=a \circ c$.
b.) If $S=\{1,2, \ldots, 1990\}$, try to define an operation " $\circ^{\prime \prime}$ in S with the above properties.

4 Number a is such that $\forall a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}$, there are integers $k_{1}, k_{2}, k_{3}, k_{4}$ such that $\sum_{1 \leq i<j \leq 4}\left(\left(a_{i}-\right.\right.$ $\left.\left.k_{i}\right)-\left(a_{j}-k_{j}\right)\right)^{2} \leq a$. Find the minimum of a.

Day 2

1 Given a triangle $A B C$ with angle $C \geq 60^{\circ}$. Prove that:
$(a+b) \cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 4+\frac{1}{\sin \left(\frac{C}{2}\right)}$.
2 Find all functions $f, g, h: \mathbb{R} \mapsto \mathbb{R}$ such that $f(x)-g(y)=(x-y) \cdot h(x+y)$ for $x, y \in \mathbb{R}$.
3 Prove that for every integer power of 2, there exists a multiple of it with all digits (in decimal expression) not zero.

4 There are arbitrary 7 points in the plane. Circles are drawn through every 4 possible concyclic points. Find the maximum number of circles that can be drawn.

