Art of Problem Solving

AoPS Community

China Team Selection Test 1991
www.artofproblemsolving.com/community/c4947
by orl, harazi, Pascual2005, Rafal

Day 1

1 Let real coefficient polynomial $f(x)=x^{n}+a_{1} \cdot x^{n-1}+\ldots+a_{n}$ has real roots $b_{1}, b_{2}, \ldots, b_{n}, n \geq 2$, prove that $\forall x \geq \max \left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, we have

$$
f(x+1) \geq \frac{2 \cdot n^{2}}{\frac{1}{x-b_{1}}+\frac{1}{x-b_{2}}+\ldots+\frac{1}{x-b_{n}}} .
$$

2 For $i=1,2, \ldots, 1991$, we choose n_{i} points and write number i on them (each point has only written one number on it). A set of chords are drawn such that:
(i) They are pairwise non-intersecting.
(ii) The endpoints of each chord have distinct numbers.

If for all possible assignments of numbers the operation can always be done, find the necessary and sufficient condition the numbers $n_{1}, n_{2}, \ldots, n_{1991}$ must satisfy for this to be possible.

35 points are given in the plane, any three non-collinear and any four non-concyclic. If three points determine a circle that has one of the remaining points inside it and the other one outside it, then the circle is said to be good. Let the number of good circles be n; find all possible values of n.

Day 2

1 We choose 5 points $A_{1}, A_{2}, \ldots, A_{5}$ on a circumference of radius 1 and centre $O . P$ is a point inside the circle. Denote Q_{i} as the intersection of $A_{i} A_{i+2}$ and $A_{i+1} P$, where $A_{7}=A_{2}$ and $A_{6}=A_{1}$. Let $O Q_{i}=d_{i}, i=1,2, \ldots, 5$. Find the product $\prod_{i=1}^{5} A_{i} Q_{i}$ in terms of d_{i}.

2 Let f be a function $f: \mathbb{N} \cup\{0\} \mapsto \mathbb{N}$, and satisfies the following conditions:
(1) $f(0)=0, f(1)=1$,
(2) $f(n+2)=23 \cdot f(n+1)+f(n), n=0,1, \ldots$.

Prove that for any $m \in \mathbb{N}$, there exist a $d \in \mathbb{N}$ such that $m|f(f(n)) \Leftrightarrow d| n$.
3 All edges of a polyhedron are painted with red or yellow. For an angle of a facet, if the edges determining it are of different colors, then the angle is called excentric. The excentricity of a
vertex A, namely S_{A}, is defined as the number of excentric angles it has. Prove that there exist two vertices B and C such that $S_{B}+S_{C} \leq 4$.

