Art of Problem Solving

AoPS Community

China Team Selection Test 1993
www.artofproblemsolving.com/community/c4949
by orl, nhat, manuel, Rafal, treegoner

Day 1

1 For all primes $p \geq 3$, define $F(p)=\sum_{k=1}^{\frac{p-1}{2}} k^{120}$ and $f(p)=\frac{1}{2}-\left\{\frac{F(p)}{p}\right\}$, where $\{x\}=x-[x]$, find the value of $f(p)$.

2 Let $n \geq 2, n \in \mathbb{N}, a, b, c, d \in \mathbb{N}, \frac{a}{b}+\frac{c}{d}<1$ and $a+c \leq n$, find the maximum value of $\frac{a}{b}+\frac{c}{d}$ for fixed n.

3 A graph $G=(V, E)$ is given. If at least n colors are required to paints its vertices so that between any two same colored vertices no edge is connected, then call this graph " n-colored". Prove that for any $n \in \mathbb{N}$, there is a n-colored graph without triangles.

Day 2

1 Find all integer solutions to $2 x^{4}+1=y^{2}$.
2 Let $S=\{(x, y) \mid x=1,2, \ldots, 1993, y=1,2,3,4\}$. If $T \subset S$ and there aren't any squares in T. Find the maximum possible value of $|T|$. The squares in T use points in S as vertices.

3 Let $A B C$ be a triangle and its bisector at A cuts its circumcircle at D. Let I be the incenter of triangle $A B C, M$ be the midpoint of $B C, P$ is the symmetric to I with respect to M (Assuming P is in the circumcircle). Extend $D P$ until it cuts the circumcircle again at N. Prove that among segments $A N, B N, C N$, there is a segment that is the sum of the other two.

