

AoPS Community

1993 China Team Selection Test

China Team Selection Test 1993

www.artofproblemsolving.com/community/c4949 by orl, nhat, manuel, Rafal, treegoner

Day 1	
1	For all primes $p \ge 3$, define $F(p) = \sum_{k=1}^{\frac{p-1}{2}} k^{120}$ and $f(p) = \frac{1}{2} - \left\{\frac{F(p)}{p}\right\}$, where $\{x\} = x - [x]$, find the value of $f(p)$.
2	Let $n \ge 2, n \in \mathbb{N}$, $a, b, c, d \in \mathbb{N}$, $\frac{a}{b} + \frac{c}{d} < 1$ and $a + c \le n$, find the maximum value of $\frac{a}{b} + \frac{c}{d}$ for fixed n .
3	A graph $G = (V, E)$ is given. If at least n colors are required to paints its vertices so that between any two same colored vertices no edge is connected, then call this graph " n -colored". Prove that for any $n \in \mathbb{N}$, there is a n -colored graph without triangles.
Day	2
1	Find all integer solutions to $2x^4 + 1 = y^2$.
2	Let $S = \{(x, y) x = 1, 2,, 1993, y = 1, 2, 3, 4\}$. If $T \subset S$ and there aren't any squares in T . Find the maximum possible value of $ T $. The squares in T use points in S as vertices.
3	Let ABC be a triangle and its bisector at A cuts its circumcircle at D . Let I be the incenter of triangle ABC , M be the midpoint of BC , P is the symmetric to I with respect to M (Assuming P is in the circumcircle). Extend DP until it cuts the circumcircle again at N . Prove that among segments AN , BN , CN , there is a segment that is the sum of the other two.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.