AoPS Community

China Team Selection Test 1994
www.artofproblemsolving.com/community/c4950
by orl, Pascual2005, fdump, Fedor Petrov, darij grinberg

Day 1

1 Find all sets comprising of 4 natural numbers such that the product of any 3 numbers in the set leaves a remainder of 1 when divided by the remaining number.

2 An n by n grid, where every square contains a number, is called an n-code if the numbers in every row and column form an arithmetic progression. If it is sufficient to know the numbers in certain squares of an n-code to obtain the numbers in the entire grid, call these squares a key.
a.) Find the smallest $s \in \mathbb{N}$ such that any s squares in an n-code ($n \geq 4$) form a key.
b.) Find the smallest $t \in \mathbb{N}$ such that any t squares along the diagonals of an n-code ($n \geq 4$) form a key.

3 Find the smallest $n \in \mathbb{N}$ such that if any 5 vertices of a regular n-gon are colored red, there exists a line of symmetry l of the n-gon such that every red point is reflected across l to a non-red point.

Day 2

1 Given $5 n$ real numbers $r_{i}, s_{i}, t_{i}, u_{i}, v_{i} \geq 1(1 \leq i \leq n)$, let $R=\frac{1}{n} \sum_{i=1}^{n} r_{i}, S=\frac{1}{n} \sum_{i=1}^{n} s_{i}, T=$ $\frac{1}{n} \sum_{i=1}^{n} t_{i}, U=\frac{1}{n} \sum_{i=1}^{n} u_{i}, V=\frac{1}{n} \sum_{i=1}^{n} v_{i}$. Prove that $\prod_{i=1}^{n} \frac{r_{i} s_{i} t_{i} u_{i} v_{i}+1}{r_{i} s_{i} t_{i} u_{i} v_{i}-1} \geq\left(\frac{R S T U V+1}{R S T U V-1}\right)^{n}$.

2 Given distinct prime numbers p and q and a natural number $n \geq 3$, find all $a \in \mathbb{Z}$ such that the polynomial $f(x)=x^{n}+a x^{n-1}+p q$ can be factored into 2 integral polynomials of degree at least 1.

3 For any 2 convex polygons S and T, if all the vertices of S are vertices of T, call S a sub-polygon of T.
I. Prove that for an odd number $n \geq 5$, there exists m sub-polygons of a convex n-gon such that they do not share any edges, and every edge and diagonal of the n-gon are edges of the m sub-polygons.
II. Find the smallest possible value of m.

