

AoPS Community

1994 China Team Selection Test

China Team Selection Test 1994

www.artofproblemsolving.com/community/c4950 by orl, Pascual2005, fdump, Fedor Petrov, darij grinberg

Day	
1	Find all sets comprising of 4 natural numbers such that the product of any 3 numbers in the set leaves a remainder of 1 when divided by the remaining number.
2	An n by n grid, where every square contains a number, is called an n -code if the numbers in every row and column form an arithmetic progression. If it is sufficient to know the numbers in certain squares of an n -code to obtain the numbers in the entire grid, call these squares a key.
	a.) Find the smallest $s \in \mathbb{N}$ such that any s squares in an n -code $(n \ge 4)$ form a key.
	b.) Find the smallest $t \in \mathbb{N}$ such that any t squares along the diagonals of an n -code $(n \ge 4)$ form a key.
3	Find the smallest $n \in \mathbb{N}$ such that if any 5 vertices of a regular <i>n</i> -gon are colored red, there exists a line of symmetry <i>l</i> of the <i>n</i> -gon such that every red point is reflected across <i>l</i> to a non-red point.
Day 2	2
1	Given $5n$ real numbers $r_i, s_i, t_i, u_i, v_i \ge 1(1 \le i \le n)$, let $R = \frac{1}{n} \sum_{i=1}^n r_i, S = \frac{1}{n} \sum_{i=1}^n s_i, T = \frac{1}{n} \sum_{i=1}^n t_i, U = \frac{1}{n} \sum_{i=1}^n u_i, V = \frac{1}{n} \sum_{i=1}^n v_i$. Prove that $\prod_{i=1}^n \frac{r_i s_i t_i u_i v_i + 1}{r_i s_i t_i u_i v_i - 1} \ge \left(\frac{RSTUV+1}{RSTUV-1}\right)^n$.
2	Given distinct prime numbers p and q and a natural number $n \ge 3$, find all $a \in \mathbb{Z}$ such that the polynomial $f(x) = x^n + ax^{n-1} + pq$ can be factored into 2 integral polynomials of degree at least 1.
3	For any 2 convex polygons S and T , if all the vertices of S are vertices of T , call S a sub-polygon of T .
	I. Prove that for an odd number $n \ge 5$, there exists m sub-polygons of a convex n -gon such that they do not share any edges, and every edge and diagonal of the n -gon are edges of the m sub-polygons.

II. Find the smallest possible value of *m*.

AoPS Online 🕸 AoPS Academy 🗿 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.