Art of Problem Solving

AoPS Community

China Team Selection Test 1995

www.artofproblemsolving.com/community/c4951
by orl, Pascual2005, grobber, kevinatcausa, fleeting_guest

Day 1

1 Find the smallest prime number p that cannot be represented in the form $\left|3^{a}-2^{b}\right|$, where a and b are non-negative integers.

2 Given a fixed acute angle θ and a pair of internally tangent circles, let the line l which passes through the point of tangency, A, cut the larger circle again at B (l does not pass through the centers of the circles). Let M be a point on the major arc $A B$ of the larger circle, N the point where $A M$ intersects the smaller circle, and P the point on ray $M B$ such that $\angle M P N=\theta$. Find the locus of P as M moves on major arc $A B$ of the larger circle.

321 people take a test with 15 true or false questions. It is known that every 2 people have at least 1 correct answer in common. What is the minimum number of people that could have correctly answered the question which the most people were correct on?

Day 2

1 Let $S=\left\{A=\left(a_{1}, \ldots, a_{s}\right) \mid a_{i}=0\right.$ or $\left.1, i=1, \ldots, 8\right\}$. For any 2 elements of $S, A=\left\{a_{1}, \ldots, a_{8}\right\}$ and $B=\left\{b_{1}, \ldots, b_{8}\right\}$. Let $d(A, B)=\sum_{i=1} 8\left|a_{i}-b_{i}\right|$. Call $d(A, B)$ the distance between A and B. At most how many elements can S have such that the distance between any 2 sets is at least 5 ?
$2 \quad A$ and B play the following game with a polynomial of degree at least 4:

$$
x^{2 n}+_^{2 n-1}+_^{2 n-2}+\ldots+_x+1=0
$$

A and B take turns to fill in one of the blanks with a real number until all the blanks are filled up. If the resulting polynomial has no real roots, A wins. Otherwise, B wins. If A begins, which player has a winning strategy?

3 Prove that the interval $[0,1]$ can be split into black and white intervals for any quadratic polynomial $P(x)$, such that the sum of weights of the black intervals is equal to the sum of weights of the white intervals. (Define the weight of the interval $[a, b]$ as $P(b)-P(a)$.)

Does the same result hold with a degree 3 or degree 5 polynomial?

