AoPS Community

China Team Selection Test 1998

www.artofproblemsolving.com/community/c4954
by orl, al.M.V., Pascual2005

Day 1

1 Find $k \in \mathbb{N}$ such that
a.) For any $n \in \mathbb{N}$, there does not exist $j \in \mathbb{Z}$ which satisfies the conditions $0 \leq j \leq n-k+1$ and $\binom{n}{j},\binom{n}{j+1}, \ldots,\binom{n}{j+k-1}$ forms an arithmetic progression.
b.) There exists $n \in \mathbb{N}$ such that there exists j which satisfies $0 \leq j \leq n-k+2$, and $\binom{n}{j},\binom{n}{j+1}, \ldots,\binom{n}{j+k-2}$ forms an arithmetic progression.

Find all n which satisfies part b.)
$2 n \geq 5$ football teams participate in a round-robin tournament. For every game played, the winner receives 3 points, the loser receives 0 points, and in the event of a draw, both teams receive 1 point. The third-from-bottom team has fewer points than all the teams ranked before it, and more points than the last 2 teams; it won more games than all the teams before it, but fewer games than the 2 teams behind it. Find the smallest possible n.

3 For a fixed $\theta \in\left[0, \frac{\pi}{2}\right]$, find the smallest $a \in \mathbb{R}^{+}$which satisfies the following conditions:
I. $\frac{\sqrt{a}}{\cos \theta}+\frac{\sqrt{a}}{\sin \theta}>1$.
II. There exists $x \in\left[1-\frac{\sqrt{a}}{\sin \theta}, \frac{\sqrt{a}}{\cos \theta}\right]$ such that $\left[(1-x) \sin \theta-\sqrt{a-x^{2} \cos ^{2} \theta}\right]^{2}+\left[x \cos \theta-\sqrt{a-(1-x)^{2} \sin ^{2} \theta}\right]^{2} \leq$ a.

Day 2

1 In acute-angled $\triangle A B C, H$ is the orthocenter, O is the circumcenter and I is the incenter. Given that $\angle C>\angle B>\angle A$, prove that I lies within $\triangle B O H$.

2 Let n be a natural number greater than $2 . l$ is a line on a plane. There are n distinct points P_{1}, P_{2}, P_{n} on l. Let the product of distances between P_{i} and the other $n-1$ points be $d_{i}(i=1,2$, ,n). There exists a point Q, which does not lie on l, on the plane. Let the distance from Q to P_{i} be $C_{i}(i=1,2, n)$. Find $S_{n}=\sum_{i=1}^{n}(-1)^{n-i} \frac{c_{i}^{2}}{d_{i}}$.

3 For any $h=2^{r}$ (r is a non-negative integer), find all $k \in \mathbb{N}$ which satisfy the following condition: There exists an odd natural number $m>1$ and $n \in \mathbb{N}$, such that $k\left|m^{h}-1, m\right| n^{\frac{m^{h}-1}{k}}+1$.

