

AoPS Community

1999 China Team Selection Test

China Team Selection Test 1999

www.artofproblemsolving.com/community/c4955 by orl, yetti

Day 1

1	For non-negative real numbers x_1, x_2, \ldots, x_n which satisfy $x_1 + x_2 + \cdots + x_n = 1$, find the largest possible value of $\sum_{j=1}^{n} (x_j^4 - x_j^5)$.
2	Find all prime numbers p which satisfy the following condition: For any prime $q < p$, if $p = kq + r, 0 \le r < q$, there does not exist an integer $q > 1$ such that $a^2 r$.
3	Let $S = \{1, 2,, 15\}$. Let $A_1, A_2,, A_n$ be n subsets of S which satisfy the following conditions: I. $ A_i = 7, i = 1, 2,, n$;

II. $|A_i \cap A_j| \le 3, 1 \le i < j \le n$

III. For any 3-element subset M of S, there exists A_k such that $M \subset A_k$.

Find the smallest possible value of n.

Day 2	
1	A circle is tangential to sides AB and AD of convex quadrilateral $ABCD$ at G and H respectively, and cuts diagonal AC at E and F . What are the necessary and sufficient conditions such that there exists another circle which passes through E and F , and is tangential to DA and DC extended?
2	For a fixed natural number $m \geq 2$, prove that

a.) There exists integers x_1, x_2, \ldots, x_{2m} such that

$$x_i x_{m+i} = x_{i+1} x_{m+i-1} + 1, i = 1, 2, \dots, m \tag{(*)}$$

b.) For any set of integers $\{x_1, x_2, \ldots, x_{2m}$ which fulfils (*), an integral sequence $\ldots, y_{-k}, \ldots, y_{-1}, y_0, y_1, \ldots, y_{-k}, \ldots, y_$

AoPS Community

1999 China Team Selection Test

can be constructed such that $y_k y_{m+k} = y_{k+1} y_{m+k-1} + 1, k = 0, \pm 1, \pm 2, \dots$ such that $y_i = x_i, i = 1, 2, \dots, 2m$.

- **3** For every permutation τ of 1, 2, ..., 10, $\tau = (x_1, x_2, ..., x_{10})$, define $S(\tau) = \sum_{k=1}^{10} |2x_k 3x_{k-1}|$. Let $x_{11} = x_1$. Find
 - **I.** The maximum and minimum values of $S(\tau)$.
 - II. The number of τ which lets $S(\tau)$ attain its maximum.
 - **III.** The number of τ which lets $S(\tau)$ attain its minimum.

Act of Problem Solving is an ACS WASC Accredited School.