AoPS Community

China Team Selection Test 1999

www.artofproblemsolving.com/community/c4955
by orl, yetti

Day 1

1 For non-negative real numbers $x_{1}, x_{2}, \ldots, x_{n}$ which satisfy $x_{1}+x_{2}+\cdots+x_{n}=1$, find the largest possible value of $\sum_{j=1}^{n}\left(x_{j}^{4}-x_{j}^{5}\right)$.

2 Find all prime numbers p which satisfy the following condition: For any prime $q<p$, if $p=$ $k q+r, 0 \leq r<q$, there does not exist an integer $q>1$ such that $a^{2} \mid r$.

3 Let $S=\{1,2, \ldots, 15\}$. Let $A_{1}, A_{2}, \ldots, A_{n}$ be n subsets of S which satisfy the following conditions:
I. $\left|A_{i}\right|=7, i=1,2, \ldots, n$;
II. $\left|A_{i} \cap A_{j}\right| \leq 3,1 \leq i<j \leq n$
III. For any 3-element subset M of S, there exists A_{k} such that $M \subset A_{k}$.

Find the smallest possible value of n.

Day 2

1 A circle is tangential to sides $A B$ and $A D$ of convex quadrilateral $A B C D$ at G and H respectively, and cuts diagonal $A C$ at E and F. What are the necessary and sufficient conditions such that there exists another circle which passes through E and F, and is tangential to $D A$ and $D C$ extended?

2 For a fixed natural number $m \geq 2$, prove that
a.) There exists integers $x_{1}, x_{2}, \ldots, x_{2 m}$ such that

$$
\begin{equation*}
x_{i} x_{m+i}=x_{i+1} x_{m+i-1}+1, i=1,2, \ldots, m \tag{*}
\end{equation*}
$$

b.) For any set of integers $\left\{x_{1}, x_{2}, \ldots, x_{2 m}\right.$ which fulfils (*), an integral sequence $\ldots, y_{-k}, \ldots, y_{-1}, y_{0}, y_{1}, \ldots$,
can be constructed such that $y_{k} y_{m+k}=y_{k+1} y_{m+k-1}+1, k=0, \pm 1, \pm 2, \ldots$ such that $y_{i}=x_{i}, i=$ $1,2, \ldots, 2 m$.

3 For every permutation τ of $1,2, \ldots, 10, \tau=\left(x_{1}, x_{2}, \ldots, x_{10}\right)$, define $S(\tau)=\sum_{k=1}^{10}\left|2 x_{k}-3 x_{k-1}\right|$. Let $x_{11}=x_{1}$. Find
I. The maximum and minimum values of $S(\tau)$.
II. The number of τ which lets $S(\tau)$ attain its maximum.
III. The number of τ which lets $S(\tau)$ attain its minimum.

