

AoPS Community

2001 China Team Selection Test

China Team Selection Test 2001

www.artofproblemsolving.com/community/c4957 by orl, vess, mecrazywong, Singular

Day 1

1	E and F are interior points of convex quadrilateral ABCD such that $AE = BE$, $CE = DE$,
	$\angle AEB = \angle CED, AF = DF, BF = CF, \angle AFD = \angle BFC.$ Prove that $\angle AFD + \angle AEB = \pi$.
2	a and b are natural numbers such that $b > a > 1$, and a does not divide b . The sequence of natural numbers $\{b_n\}_{n=1}^{\infty}$ satisfies $b_{n+1} \ge 2b_n \forall n \in \mathbb{N}$. Does there exist a sequence $\{a_n\}_{n=1}^{\infty}$ of natural numbers such that for all $n \in \mathbb{N}$, $a_{n+1} - a_n \in \{a, b\}$, and for all $m, l \in \mathbb{N}$ (m may be equal to l), $a_m + a_l \notin \{b_n\}_{n=1}^{\infty}$?
3	For a given natural number $k > 1$, find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, $f[x^k + f(y)] = y + [f(x)]^k$.

Day 2

1 For a given natural number n > 3, the real numbers $x_1, x_2, \ldots, x_n, x_{n+1}, x_{n+2}$ satisfy the conditions $0 < x_1 < x_2 < \cdots < x_n < x_{n+1} < x_{n+2}$. Find the minimum possible value of

$$\frac{(\sum_{i=1}^{n} \frac{x_{i+1}}{x_{i}})(\sum_{j=1}^{n} \frac{x_{j+2}}{x_{j+1}})}{(\sum_{k=1}^{n} \frac{x_{k+1}x_{k+2}}{x_{k+1}^{2}+x_{k}x_{k+2}})(\sum_{l=1}^{n} \frac{x_{l+1}^{2}+x_{l}x_{l+2}}{x_{l}x_{l+1}})}$$

and find all (n + 2)-tuplets of real numbers $(x_1, x_2, \ldots, x_n, x_{n+1}, x_{n+2})$ which gives this value.

- 2 In the equilateral $\triangle ABC$, D is a point on side BC. O_1 and I_1 are the circumcenter and incenter of $\triangle ABD$ respectively, and O_2 and I_2 are the circumcenter and incenter of $\triangle ADC$ respectively. O_1I_1 intersects O_2I_2 at P. Find the locus of point P as D moves along BC.
- **3** Let $F = \max_{1 \le x \le 3} |x^3 ax^2 bx c|$. When *a*, *b*, *c* run over all the real numbers, find the smallest possible value of *F*.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.