AoPS Community

China Team Selection Test 2001
www.artofproblemsolving.com/community/c4957
by orl, vess, mecrazywong, Singular

Day 1

$1 E$ and F are interior points of convex quadrilateral $A B C D$ such that $A E=B E, C E=D E$, $\angle A E B=\angle C E D, A F=D F, B F=C F, \angle A F D=\angle B F C$. Prove that $\angle A F D+\angle A E B=\pi$.
$2 \quad a$ and b are natural numbers such that $b>a>1$, and a does not divide b. The sequence of natural numbers $\left\{b_{n}\right\}_{n=1}^{\infty}$ satisfies $b_{n+1} \geq 2 b_{n} \forall n \in \mathbb{N}$. Does there exist a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of natural numbers such that for all $n \in \mathbb{N}, a_{n+1}-a_{n} \in\{a, b\}$, and for all $m, l \in \mathbb{N}$ (m may be equal to l), $a_{m}+a_{l} \notin\left\{b_{n}\right\}_{n=1}^{\infty}$?

3 For a given natural number $k>1$, find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, $f\left[x^{k}+f(y)\right]=y+[f(x)]^{k}$.

Day 2

1 For a given natural number $n>3$, the real numbers $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}$ satisfy the conditions $0<x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}<x_{n+2}$. Find the minimum possible value of

$$
\frac{\left(\sum_{i=1}^{n} \frac{x_{i+1}}{x_{i}}\right)\left(\sum_{j=1}^{n} \frac{x_{j+2}}{x_{j+1}^{2}}\right)}{\left(\sum_{k=1}^{n} \frac{x_{k+1} x_{k+2}}{x_{k+1}^{2}+x_{k} x_{k+2}}\right)\left(\sum_{l=1}^{n} \frac{x_{l+1}^{2}+x_{l} x_{l+2}}{x_{l} x_{l+1}}\right)}
$$

and find all $(n+2)$-tuplets of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right)$ which gives this value.
2 In the equilateral $\triangle A B C, D$ is a point on side $B C . O_{1}$ and I_{1} are the circumcenter and incenter of $\triangle A B D$ respectively, and O_{2} and I_{2} are the circumcenter and incenter of $\triangle A D C$ respectively. $O_{1} I_{1}$ intersects $O_{2} I_{2}$ at P. Find the locus of point P as D moves along $B C$.

3 Let $F=\max _{1 \leq x \leq 3}\left|x^{3}-a x^{2}-b x-c\right|$. When a, b, c run over all the real numbers, find the smallest possible value of F.

