AoPS Community

China Team Selection Test 2002
www.artofproblemsolving.com/community/c4958
by grobber, orl, shobber, April

- TST

Day 1

1 Let E and F be the intersections of opposite sides of a convex quadrilateral $A B C D$. The two diagonals meet at P. Let O be the foot of the perpendicular from P to $E F$. Show that $\angle B O C=$ $\angle A O D$.

2 Let $\left(a_{n}\right)$ be the sequence of reals defined by $a_{1}=\frac{1}{4}$ and the recurrence $a_{n}=\frac{1}{4}\left(1+a_{n-1}\right)^{2}, n \geq 2$. Find the minimum real λ such that for any non-negative reals $x_{1}, x_{2}, \ldots, x_{2002}$, it holds

$$
\sum_{k=1}^{2002} A_{k} \leq \lambda a_{2002}
$$

where $A_{k}=\frac{x_{k}-k}{\left(x_{k}+\cdots+x_{2002}+\frac{k(k-1)}{2}+1\right)^{2}}, k \geq 1$.
3 Seventeen football fans were planning to go to Korea to watch the World Cup football match. They selected 17 matches. The conditions of the admission tickets they booked were such that

- One person should book at most one admission ticket for one match;
- At most one match was same in the tickets booked by every two persons;
- There was one person who booked six tickets.

How many tickets did those football fans book at most?

Day 2

1
Find all natural numbers $n(n \geq 2)$ such that there exists reals $a_{1}, a_{2}, \ldots, a_{n}$ which satisfy

$$
\left\{\left|a_{i}-a_{j}\right| \mid 1 \leq i<j \leq n\right\}=\left\{1,2, \ldots, \frac{n(n-1)}{2}\right\}
$$

Let $A=\{1,2,3,4,5,6\}, B=\{7,8,9, \ldots, n\} . A_{i}(i=1,2, \ldots, 20)$ contains eight numbers, three of which are chosen from A and the other five numbers from B. $\left|A_{i} \cap A_{j}\right| \leq 2,1 \leq i<j \leq 20$. Find the minimum possible value of n.

2 Given an integer $k . f(n)$ is defined on negative integer set and its values are integers. $f(n)$ satisfies

$$
f(n) f(n+1)=(f(n)+n-k)^{2},
$$

for $n=-2,-3, \cdots$. Find an expression of $f(n)$.
3 Let
$f\left(x_{1}, x_{2}, x_{3}\right)=-2 \cdot\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)+3 \cdot\left(x_{1}^{2}\left(x_{2}+x_{3}\right)+x_{2}^{2} \cdot\left(x_{1}+x_{3}\right)+x_{3}^{2} \cdot\left(x_{1}+x_{2}\right)-12 x_{1} x_{2} x_{3}\right.$.
For any reals r, s, t, we denote

$$
g(r, s, t)=\max _{t \leq x_{3} \leq t+2}\left|f\left(r, r+2, x_{3}\right)+s\right| .
$$

Find the minimum value of $g(r, s, t)$.

- \quad Quiz 1

1 Given $n \geq 3, n$ is a integer. Prove that:

$$
\left(2^{n}-2\right) \cdot \sqrt{2 i-1} \geq\left(\sum_{j=0}^{i-1} C_{n}^{j}+C_{n-1}^{i-1}\right) \cdot \sqrt{n}
$$

where if n is even, then $1 \leq i \leq \frac{n}{2}$; if n is odd, then $1 \leq i \leq \frac{n-1}{2}$.
2 There are n points ($n \geq 4$) on a sphere with radius R, and not all of them lie on the same semisphere. Prove that among all the angles formed by any two of the n points and the sphere centre $O(O$ is the vertex of the angle $)$, there is at least one that is not less than $2 \arcsin \frac{\sqrt{6}}{3}$.

3 The positive integers α, β, γ are the roots of a polynomial $f(x)$ with degree 4 and the coefficient of the first term is 1 . If there exists an integer such that $f(-1)=f^{2}(s)$.

Prove that $\alpha \beta$ is not a perfect square.

- Quiz 2

1 Let $P_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, with $n \geq 2$, be a real-coefficient polynomial. Prove that if there exists $a>0$ such that

$$
P_{n}(x)=(x+a)^{2}\left(\sum_{i=0}^{n-2} b_{i} x^{i}\right)
$$

where b_{i} are positive real numbers, then there exists some i, with $1 \leq i \leq n-1$, such that

$$
a_{i}^{2}-4 a_{i-1} a_{i+1} \leq 0
$$

$2 A_{1}, B_{1}$ and C_{1} are the projections of the vertices A, B and C of triangle $A B C$ on the respective sides. If $A B=c, A C=b, B C=a$ and $A C_{1}=2 t A B, B A_{1}=2 r B C, C B_{1}=2 \mu A C$. Prove that:

$$
\frac{a^{2}}{b^{2}} \cdot\left(\frac{t}{1-2 t}\right)^{2}+\frac{b^{2}}{c^{2}} \cdot\left(\frac{r}{1-2 r}\right)^{2}+\frac{c^{2}}{a^{2}} \cdot\left(\frac{\mu}{1-2 \mu}\right)^{2}+16 \operatorname{tr} \mu \geq 1
$$

3 Let $p_{i} \geq 2, i=1,2, \cdots n$ be n integers such that any two of them are relatively prime. Let:

$$
P=\left\{x=\sum_{i=1}^{n} x_{i} \prod_{j=1, j \neq i}^{n} p_{j} \mid x_{i} \text { is a non-negative integer, } i=1,2, \cdots n\right\}
$$

Prove that the biggest integer M such that $M \notin P$ is greater than $\frac{n-2}{2} \cdot \prod_{i=1}^{n} p_{i}$, and also find M.

- \quad Quiz 3

1 Given triangle $A B C$ and $A B=c, A C=b$ and $B C=a$ satisfying $a \geq b \geq c, B E$ and $C F$ are two interior angle bisectors. P is a point inside triangle $A E F$. R and Q are the projections of P on sides $A B$ and $A C$.

Prove that $P R+P Q+R Q<b$.
2 For any two rational numbers p and q in the interval $(0,1)$ and function f, there is always $f\left(\frac{p+q}{2}\right) \leq$ $\frac{f(p)+f(q)}{2}$. Then prove that for any rational numbers $\lambda, x_{1}, x_{2} \in(0,1)$, there is always:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{i}\right)+(1-\lambda) f\left(x_{2}\right)
$$

3 Sequence $\left\{f_{n}(a)\right\}$ satisfies $f_{n+1}(a)=2-\frac{a}{f_{n}(a)}, f_{1}(a)=2, n=1,2, \cdots$. If there exists a natural number n, such that $f_{n+k}(a)=f_{k}(a), k=1,2, \cdots$, then we call the non-zero real a a periodic point of $f_{n}(a)$.

2002 China Team Selection Test

Prove that the sufficient and necessary condition for a being a periodic point of $f_{n}(a)$ is $p_{n}(a-$ $1)=0$, where $p_{n}(x)=\sum_{k=0}^{\left[\frac{n-1}{2}\right]}(-1)^{k} C_{n}^{2 k+1} x^{k}$, here we define $\frac{a}{0}=\infty$ and $\frac{a}{\infty}=0$.

- \quad Quiz 4

1 Given a positive integer n, for all positive integers $a_{1}, a_{2}, \cdots, a_{n}$ that satisfy $a_{1}=1, a_{i+1} \leq a_{i}+1$, find $\sum_{i=1}^{n} a_{1} a_{2} \cdots a_{i}$.
$2 \quad$ Circles ω_{1} and ω_{2} intersect at points A and B. Points C and D are on circles ω_{1} and ω_{2}, respectively,
such that lines $A C$ and $A D$ are tangent to circles ω_{2} and ω_{1}, respectively.
Let I_{1} and I_{2} be the incenters of triangles $A B C$ and $A B D$, respectively. Segments $I_{1} I_{2}$ and $A B$ intersect at E.
Prove that: $\frac{1}{A E}=\frac{1}{A C}+\frac{1}{A D}$
3 Find all groups of positive integers (a, x, y, n, m) that satisfy $a\left(x^{n}-x^{m}\right)=\left(a x^{m}-4\right) y^{2}$ and $m \equiv n(\bmod 2)$ and $a x$ is odd.

- \quad Quiz 5

1 In acute triangle $A B C$, show that:
$\sin ^{3} A \cos ^{2}(B-C)+\sin ^{3} B \cos ^{2}(C-A)+\sin ^{3} C \cos ^{2}(A-B) \leq 3 \sin A \sin B \sin C$
and find out when the equality holds.
$2 \quad m$ and n are positive integers. In a 8×8 chessboard, (m, n) denotes the number of grids a Horse can jump in a chessboard (m horizontal n vertical or n horizontal m vertical). If a (m, n)Horse starts from one grid, passes every grid once and only once, then we call this kind of Horse jump route a \mathbf{H} Route. For example, the (1,2)Horse has its \mathbf{H} Route. Find the smallest positive integer t, such that from any grid of the chessboard, the $(t, t+1)$ Horse does not has any \mathbf{H} Route.
$3 n$ sets $S_{1}, S_{2} \cdots, S_{n}$ consists of non-negative numbers. x_{i} is the sum of all elements of S_{i}, prove that there is a natural number $k, 1<k<n$, and:

$$
\sum_{i=1}^{n} x_{i}<\frac{1}{k+1}\left[k \cdot \frac{n(n+1)(2 n+1)}{6}-(k+1)^{2} \cdot \frac{n(n+1)}{2}\right]
$$

and there exists subscripts i, j, t, and l (at least 3 of them are distinct) such that $x_{i}+x_{j}=x_{t}+x_{l}$.

AoPS Community

- Quiz 6

1 Given that $a_{1}=1, a_{2}=5, a_{n+1}=\frac{a_{n} \cdot a_{n-1}}{\sqrt{a_{n}^{2}+a_{n-1}^{2}+1}}$. Find a expression of the general term of $\left\{a_{n}\right\}$.
$2 \odot O_{1}$ and $\odot O_{2}$ meet at points P and Q. The circle through P, O_{1} and O_{2} meets $\odot O_{1}$ and $\odot O_{2}$ at points A and B. Prove that the distance from Q to the lines $P A, P B$ and $A B$ are equal.
(Prove the following three cases: O_{1} and O_{2} are in the common space of $\odot O_{1}$ and $\odot O_{2}$; O_{1} and O_{2} are out of the common space of $\odot O_{1}$ and $\odot O_{2} ; O_{1}$ is in the common space of $\odot O_{1}$ and $\odot O_{2}, O_{2}$ is out of the common space of $\odot O_{1}$ and $\odot O_{2}$.

3 There is a game. The magician let the participant think up a positive integer (at least two digits). For example, an integer $\overline{a_{1} a_{2} \cdots a_{n}}$ is rearranged as $\overline{a_{i_{1}} a_{i_{2}} \cdots a_{i_{n}}}$, that is, $i_{1}, i_{2}, \cdots, i_{n}$ is a permutation of $1,2, \cdots, n$. Then we get $n!-1$ integers. The participant is asked to calculate the sum of the $n!-1$ numbers, then tell the magician the sum S. The magician claims to be able to know the original number when he is told the sum S. Try to decide whether the magician can be successful or not.

- \quad Quiz 7

1 Circle O is inscribed in a trapzoid $A B C D, \angle A$ and $\angle B$ are all acute angles. A line through O intersects $A D$ at E and $B C$ at F, and satisfies the following conditions:
(1) $\angle D E F$ and $\angle C F E$ are acute angles.
(2) $A E+B F=D E+C F$.

Let $A B=a, B C=b, C D=c$, then use a, b, c to express $A E$.
2 Find all non-negative integers m and n, such that $\left(2^{n}-1\right) \cdot\left(3^{n}-1\right)=m^{2}$.
3 Given positive integer $m \geq 17,2 m$ contestants participate in a circular competition. In each round, we devide the $2 m$ contestants into m groups, and the two contestants in one group play against each other. The groups are re-divided in the next round. The contestants compete for $2 m-1$ rounds so that each contestant has played a game with all the $2 m-1$ players. Find the least possible positive integer n, so that there exists a valid competition and after n rounds, for any 4 contestants, non of them has played with the others or there have been at least 2 games played within those 4.

- \quad Quiz 8

$1 \quad A$ is a set of points on the plane, L is a line on the same plane. If L passes through one of the points in A, then we call that L passes through A.
(1) Prove that we can divide all the rational points into 100 pairwisely non-intersecting point sets with infinity elements. If for any line on the plane, there are two rational points on it, then it passes through all the 100 sets.
(2) Find the biggest integer r, so that if we divide all the rational points on the plane into 100 pairwisely non-intersecting point sets with infinity elements with any method, then there is at least one line that passes through r sets of the 100 point sets.

2 Does there exist 2002 distinct positive integers $k_{1}, k_{2}, \cdots k_{2002}$ such that for any positive integer $n \geq 2001$, one of $k_{1} 2^{n}+1, k_{2} 2^{n}+1, \cdots, k_{2002} 2^{n}+1$ is prime?

3 For positive integers a, b, c let α, β, γ be pairwise distinct positive integers such that

$$
\begin{cases}c a & =\alpha+\beta+\gamma \\ b & =\alpha \cdot \beta+\beta \cdot \gamma+\gamma \cdot \alpha \\ c^{2} & =\alpha \beta \gamma .\end{cases}
$$

Also, let λ be a real number that satisfies the condition

$$
\lambda^{4}-2 a \lambda^{2}+8 c \lambda+a^{2}-4 b=0 .
$$

Prove that λ is an integer if and only if α, β, γ are all perfect squares.

