

AoPS Community

2003 China Team Selection Test

China Team Selection Test 2003

www.artofproblemsolving.com/community/c4959 by orl, shobber, mecrazywong, pavel kozlov, nhat

-	TST
Day 1	
1	ABC is an acute-angled triangle. Let D be the point on BC such that AD is the bisector of $\angle A$. Let E, F be the feet of perpendiculars from D to AC, AB respectively. Suppose the lines BE and CF meet at H . The circumcircle of triangle AFH meets BE at G (apart from H). Prove that the triangle constructed from BG, GE and BF is right-angled.
2	Suppose $A \subseteq \{0, 1,, 29\}$. It satisfies that for any integer k and any two members $a, b \in A(a, b)$ is allowed to be same), $a+b+30k$ is always not the product of two consecutive integers. Please find A with largest possible cardinality.
3	Suppose $A \subset \{(a_1, a_2, \dots, a_n) \mid a_i \in \mathbb{R}, i = 1, 2 \dots, n\}$. For any $\alpha = (a_1, a_2, \dots, a_n) \in A$ and $\beta = (b_1, b_2, \dots, b_n) \in A$, we define
	$\gamma(\alpha,\beta) = (a_1 - b_1 , a_2 - b_2 , \dots, a_n - b_n),$
	$D(A) = \{ \gamma(\alpha, \beta) \mid \alpha, \beta \in A \}.$
	Please show that $ D(A) \ge A $.
Day 2	
1	Find all functions $f : \mathbb{Z}^+ \to \mathbb{R}$, which satisfies $f(n+1) \ge f(n)$ for all $n \ge 1$ and $f(mn) = f(m)f(n)$ for all $(m, n) = 1$.
2	Find all functions $f : \mathbb{Z}^+ \to \mathbb{R}$, which satisfies $f(n+1) \ge f(n)$ for all $n \ge 1$ and $f(mn) = f(m)f(n)$ for all $(m, n) = 1$. Suppose $A = \{1, 2, \dots, 2002\}$ and $M = \{1001, 2003, 3005\}$. <i>B</i> is an non-empty subset of <i>A</i> . <i>B</i> is called a <i>M</i> -free set if the sum of any two numbers in <i>B</i> does not belong to <i>M</i> . If $A = A_1 \cup A_2$, $A_1 \cap A_2 = \emptyset$ and A_1, A_2 are <i>M</i> -free sets, we call the ordered pair (A_1, A_2) a <i>M</i> -partition of <i>A</i> . Find the number of <i>M</i> -partitions of <i>A</i> .
1 2 3	Find all functions $f : \mathbb{Z}^+ \to \mathbb{R}$, which satisfies $f(n+1) \ge f(n)$ for all $n \ge 1$ and $f(mn) = f(m)f(n)$ for all $(m, n) = 1$. Suppose $A = \{1, 2, \dots, 2002\}$ and $M = \{1001, 2003, 3005\}$. <i>B</i> is an non-empty subset of <i>A</i> . <i>B</i> is called a <i>M</i> -free set if the sum of any two numbers in <i>B</i> does not belong to <i>M</i> . If $A = A_1 \cup A_2$, $A_1 \cap A_2 = \emptyset$ and A_1, A_2 are <i>M</i> -free sets, we call the ordered pair (A_1, A_2) a <i>M</i> -partition of <i>A</i> . Find the number of <i>M</i> -partitions of <i>A</i> . Let (x_n) be a real sequence satisfying $x_0 = 0, x_2 = \sqrt[3]{2}x_1$, and $x_{n+1} = \frac{1}{\sqrt[3]{4}}x_n + \sqrt[3]{4}x_{n-1} + \frac{1}{2}x_{n-2}$ for every integer $n \ge 2$, and such that x_3 is a positive integer. Find the minimal number of integers belonging to this sequence.
1 2 3 -	Find all functions $f : \mathbb{Z}^+ \to \mathbb{R}$, which satisfies $f(n+1) \ge f(n)$ for all $n \ge 1$ and $f(mn) = f(m)f(n)$ for all $(m, n) = 1$. Suppose $A = \{1, 2, \dots, 2002\}$ and $M = \{1001, 2003, 3005\}$. <i>B</i> is an non-empty subset of <i>A</i> . <i>B</i> is called a <i>M</i> -free set if the sum of any two numbers in <i>B</i> does not belong to <i>M</i> . If $A = A_1 \cup A_2$, $A_1 \cap A_2 = \emptyset$ and A_1, A_2 are <i>M</i> -free sets, we call the ordered pair (A_1, A_2) a <i>M</i> -partition of <i>A</i> . Find the number of <i>M</i> -partitions of <i>A</i> . Let (x_n) be a real sequence satisfying $x_0 = 0, x_2 = \sqrt[3]{2}x_1$, and $x_{n+1} = \frac{1}{\sqrt[3]{4}}x_n + \sqrt[3]{4}x_{n-1} + \frac{1}{2}x_{n-2}$ for every integer $n \ge 2$, and such that x_3 is a positive integer. Find the minimal number of integers belonging to this sequence.

AoPS Community

2003 China Team Selection Test

1 *x*, *y* and *z* are positive reals such that x + y + z = xyz. Find the minimum value of:

$$x^{7}(yz-1) + y^{7}(zx-1) + z^{7}(xy-1)$$

- 2 In triangle *ABC*, the medians and bisectors corresponding to sides *BC*, *CA*, *AB* are m_a , m_b , m_c and w_a , w_b , w_c respectively. $P = w_a \cap m_b$, $Q = w_b \cap m_c$, $R = w_c \cap m_a$. Denote the areas of triangle *ABC* and *PQR* by F_1 and F_2 respectively. Find the least positive constant m such that $\frac{F_1}{F_2} < m$ holds for any $\triangle ABC$.
- **3** There is a frog in every vertex of a regular 2n-gon with circumcircle($n \ge 2$). At certain time, all frogs jump to the neighborhood vertices simultaneously (There can be more than one frog in one vertex). We call it as *a way of jump*. It turns out that there is *a way of jump* with respect to 2n-gon, such that the line connecting any two distinct vertice having frogs on it after the jump, does not pass through the circumcentre of the 2n-gon. Find all possible values of *n*.
- Quiz 2
- 1 Let *ABCD* be a quadrilateral which has an incircle centered at *O*. Prove that

$$OA \cdot OC + OB \cdot OD = \sqrt{AB \cdot BC \cdot CD \cdot DA}$$

- **2** Let x < y be positive integers and $P = \frac{x^3 y}{1 + xy}$. Find all integer values that P can take.
- **3** The *n* roots of a complex coefficient polynomial $f(z) = z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n$ are z_1, z_2, \cdots, z_n . If $\sum_{k=1}^n |a_k|^2 \le 1$, then prove that $\sum_{k=1}^n |z_k|^2 \le n$.

– Quiz 3

1 $m \text{ and } n \text{ are positive integers. Set } A = \{1, 2, \dots, n\}. \text{ Let set } B_n^m = \{(a_1, a_2 \dots, a_m) \mid a_i \in A, i = 1, 2, \dots, m\} \text{ satisfying:}$ (1) $|a_i - a_{i+1}| \neq n - 1, i = 1, 2, \dots, m - 1;$ and

(2) at least three of a_1, a_2, \dots, a_m ($m \ge 3$) are pairwise distince.

Find $|B_n^m|$ and $|B_6^3|$.

2 Can we find positive reals $a_1, a_2, \ldots, a_{2002}$ such that for any positive integer k, with $1 \le k \le 2002$, every complex root z of the following polynomial f(x) satisfies the condition $|\text{Im } z| \le |\text{Re } z|$,

$$f(x) = a_{k+2001}x^{2001} + a_{k+2000}x^{2000} + \dots + a_{k+1}x + a_k,$$

AoPS Community

2003 China Team Selection Test

where $a_{2002+i} = a_i$, for $i = 1, 2, \dots, 2001$.

Let $x_0 + \sqrt{2003}y_0$ be the minimum positive integer root of Pell function $x^2 - 2003y^2 = 1$. Find all 3 the positive integer solutions (x, y) of the equation, such that x_0 is divisible by any prime factor of x. Quiz 4 _ In triangle ABC, AB > BC > CA, AB = 6, $\angle B - \angle C = 90^{\circ}$. The incircle touches BC at E and 1 EF is a diameter of the incircle. Radical AF intersect BC at D. DE equals to the circumradius of $\triangle ABC$. Find *BC* and *AC*. 2 Find all functions $f, g: R \to R$ such that f(x + yg(x)) = g(x) + xf(y) for $x, y \in R$. 3 Let $A = \{a_1, a_2, \dots, a_n\}$ and $B = \{b_1, b_2, \dots, b_n\}$ be two positive integer sets and $|A \cap B| = 1$. $C = \{ all the 2-element subsets of A \} \cup \{ all the 2-element subsets of B \}$. Function $f : A \cup B \rightarrow C = \{ all the 2-element subsets of B \}$. $\{0, 1, 2, \dots 2C_n^2\}$ is injective. For any $\{x, y\} \in C$, denote |f(x) - f(y)| as the mark of $\{x, y\}$. If $n \ge 6$, prove that at least two elements in C have the same mark. _ Quiz 5 1 Let S be the set of points inside and on the boarder of a regular haxagon with side length 1. Find the least constant r, such that there exists one way to colour all the points in S with three colous so that the distance between any two points with same colour is less than r. Denote by (ABC) the circumcircle of a triangle ABC. 2 Let ABC be an isosceles right-angled triangle with AB = AC = 1 and $\measuredangle CAB = 90^{\circ}$. Let D be the midpoint of the side BC, and let E and F be two points on the side BC. Let M be the point of intersection of the circles (ADE) and (ABF) (apart from A). Let N be the point of intersection of the line AF and the circle (ACE) (apart from A). Let P be the point of intersection of the line AD and the circle (AMN). Find the length of *AP*. Sequence $\{a_n\}$ satisfies: $a_1 = 3$, $a_2 = 7$, $a_n^2 + 5 = a_{n-1}a_{n+1}$, $n \ge 2$. If $a_n + (-1)^n$ is prime, prove 3 that there exists a nonnegative integer m such that $n = 3^m$. Quiz 6 _ Let $g(x) = \sum_{k=1}^{n} a_k \cos kx$, $a_1, a_2, \cdots, a_n, x \in R$. If $g(x) \ge -1$ holds for every $x \in R$, prove that 1 $\sum_{k=1}^{n} a_k \leq n.$

2 Positive integer *n* cannot be divided by 2 and 3, there are no nonnegative integers *a* and *b* such that $|2^a - 3^b| = n$. Find the minimum value of *n*.

(1) D is an arbitrary point in $\triangle ABC$. Prove that:

3

 $\frac{BC}{\min AD, BD, CD} \geq \{\begin{array}{c} 2\sin A, \ \angle A < 90^o\\ 2, \ \angle A \geq 90^o \end{array}$ (2) E is an arbitrary point in convex quadrilateral ABCD. Denote k the ratio of the largest and least distances of any two points among A, B, C, D, E. Prove that $k \ge 2 \sin 70^{\circ}$. Can equality be achieved? Quiz 7 1 There are $n(n \ge 3)$ circles in the plane, all with radius 1. In among any three circles, at least two have common point(s), then the total area covered by these n circles is less than 35. 2 Given an integer $a_1(a_1 \neq -1)$, find a real number sequence $\{a_n\}(a_i \neq 0, i = 1, 2, \dots, 5)$ such that x_1, x_2, \dots, x_5 and y_1, y_2, \dots, y_5 satisfy $b_{i1}x_1 + b_{i2}x_2 + \dots + b_{i5}x_5 = 2y_i$, i = 1, 2, 3, 4, 5, then $x_1y_1 + x_2y_2 + \dots + x_5y_5 = 0$, where $b_{ij} = \prod_{1 \le k \le i} (1 + ja_k)$. 3 Given S be the finite lattice (with integer coordinate) set in the xy-plane. A is the subset of S with most elements such that the line connecting any two points in A is not parallel to x-axis or y-axis. B is the subset of integer with least elements such that for any $(x, y) \in S$, $x \in B$ or $y \in B$ holds. Prove that $|A| \ge |B|$. Quiz 8 _ Triangle ABC is inscribed in circle O. Tangent PD is drawn from A, D is on ray BC, P is on 1 ray DA. Line PU ($U \in BD$) intersects circle O at Q, T, and intersect AB and AC at R and S respectively. Prove that if QR = ST, then PQ = UT. Let S be a finite set. f is a function defined on the subset-group 2^S of set S. f is called monotonic decreasing 2 if when $X \subseteq Y \subseteq S$, then $f(X) \ge f(Y)$ holds. Prove that: $f(X \cup Y) + f(X \cap Y) \le f(X) + f(Y)$ for $X, Y \subseteq S$ if and only if $g(X) = f(X \cup \{a\}) - f(X)$ is a monotonic decreasing function on the subset-group $2^{S \setminus \{a\}}$ of set $S \setminus \{a\}$ for any $a \in S$. Let $a_1, a_2, ..., a_n$ be positive real number $(n \ge 2)$,not all equal, such that $\sum_{k=1}^n a_k^{-2n} = 1$, prove 3 that: $\sum_{k=1}^{n} a_k^{2n} - n^2 \cdot \sum_{1 \le i \le j \le n} \left(\frac{a_i}{a_i} - \frac{a_j}{a_i}\right)^2 > n^2$

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.