AoPS Community

China Team Selection Test 2003

www.artofproblemsolving.com/community/c4959
by orl, shobber, mecrazywong, pavel kozlov, nhat

- TST

Day 1

$1 A B C$ is an acute-angled triangle. Let D be the point on $B C$ such that $A D$ is the bisector of $\angle A$. Let E, F be the feet of perpendiculars from D to $A C, A B$ respectively. Suppose the lines $B E$ and $C F$ meet at H. The circumcircle of triangle $A F H$ meets $B E$ at G (apart from H). Prove that the triangle constructed from $B G, G E$ and $B F$ is right-angled.

2 Suppose $A \subseteq\{0,1, \ldots, 29\}$. It satisfies that for any integer k and any two members $a, b \in A(a, b$ is allowed to be same), $a+b+30 k$ is always not the product of two consecutive integers. Please find A with largest possible cardinality.

3 Suppose $A \subset\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{R}, i=1,2 \ldots, n\right\}$. For any $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A$ and $\beta=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in A$, we define

$$
\begin{gathered}
\gamma(\alpha, \beta)=\left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|, \ldots,\left|a_{n}-b_{n}\right|\right), \\
D(A)=\{\gamma(\alpha, \beta) \mid \alpha, \beta \in A\} .
\end{gathered}
$$

Please show that $|D(A)| \geq|A|$.

Day 2

1 Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$, which satisfies $f(n+1) \geq f(n)$ for all $n \geq 1$ and $f(m n)=$ $f(m) f(n)$ for all $(m, n)=1$.

2 Suppose $A=\{1,2, \ldots, 2002\}$ and $M=\{1001,2003,3005\}$. B is an non-empty subset of $A . B$ is called a M-free set if the sum of any two numbers in B does not belong to M. If $A=A_{1} \cup A_{2}$, $A_{1} \cap A_{2}=\emptyset$ and A_{1}, A_{2} are M-free sets, we call the ordered pair $\left(A_{1}, A_{2}\right)$ a M-partition of A. Find the number of M-partitions of A.

3 Let $\left(x_{n}\right)$ be a real sequence satisfying $x_{0}=0, x_{2}=\sqrt[3]{2} x_{1}$, and $x_{n+1}=\frac{1}{\sqrt[3]{4}} x_{n}+\sqrt[3]{4} x_{n-1}+\frac{1}{2} x_{n-2}$ for every integer $n \geq 2$, and such that x_{3} is a positive integer. Find the minimal number of integers belonging to this sequence.

```
- Quiz 1
```

$1 \quad x, y$ and z are positive reals such that $x+y+z=x y z$. Find the minimum value of:

$$
x^{7}(y z-1)+y^{7}(z x-1)+z^{7}(x y-1)
$$

2 In triangle $A B C$, the medians and bisectors corresponding to sides $B C, C A, A B$ are m_{a}, m_{b}, m_{c} and w_{a}, w_{b}, w_{c} respectively. $P=w_{a} \cap m_{b}, Q=w_{b} \cap m_{c}, R=w_{c} \cap m_{a}$. Denote the areas of triangle $A B C$ and $P Q R$ by F_{1} and F_{2} respectively. Find the least positive constant m such that $\frac{F_{1}}{F_{2}}<m$ holds for any $\triangle A B C$.

3 There is a frog in every vertex of a regular 2 n -gon with circumcircle $(n \geq 2)$. At certain time, all frogs jump to the neighborhood vertices simultaneously (There can be more than one frog in one vertex). We call it as a way of jump. It turns out that there is a way of jump with respect to $2 n$-gon, such that the line connecting any two distinct vertice having frogs on it after the jump, does not pass through the circumcentre of the $2 n-g o n$. Find all possible values of n.

- Quiz 2

1 Let $A B C D$ be a quadrilateral which has an incircle centered at O. Prove that

$$
O A \cdot O C+O B \cdot O D=\sqrt{A B \cdot B C \cdot C D \cdot D A}
$$

2 Let $x<y$ be positive integers and $P=\frac{x^{3}-y}{1+x y}$. Find all integer values that P can take.
3 The n roots of a complex coefficient polynomial $f(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}$ are $z_{1}, z_{2}, \cdots, z_{n}$. If $\sum_{k=1}^{n}\left|a_{k}\right|^{2} \leq 1$, then prove that $\sum_{k=1}^{n}\left|z_{k}\right|^{2} \leq n$.

- \quad Quiz 3

$1 \quad m$ and n are positive integers. Set $A=\{1,2, \cdots, n\}$. Let set $B_{n}^{m}=\left\{\left(a_{1}, a_{2} \cdots, a_{m}\right) \mid a_{i} \in A, i=\right.$ $1,2, \cdots, m\}$ satisfying:
(1) $\left|a_{i}-a_{i+1}\right| \neq n-1, i=1,2, \cdots, m-1$; and
(2) at least three of $a_{1}, a_{2}, \cdots, a_{m}(m \geq 3)$ are pairwise distince.

Find $\left|B_{n}^{m}\right|$ and $\left|B_{6}^{3}\right|$.
2 Can we find positive reals $a_{1}, a_{2}, \ldots, a_{2002}$ such that for any positive integer k, with $1 \leq k \leq 2002$, every complex root z of the following polynomial $f(x)$ satisfies the condition $|\operatorname{lm} z| \leq|\operatorname{Re} z|$,

$$
f(x)=a_{k+2001} x^{2001}+a_{k+2000} x^{2000}+\cdots+a_{k+1} x+a_{k},
$$

where $a_{2002+i}=a_{i}$, for $i=1,2, \ldots, 2001$.
3 Let $x_{0}+\sqrt{2003} y_{0}$ be the minimum positive integer root of Pell function $x^{2}-2003 y^{2}=1$. Find all the positive integer solutions (x, y) of the equation, such that x_{0} is divisible by any prime factor of x.

- \quad Quiz 4

1 In triangle $A B C, A B>B C>C A, A B=6, \angle B-\angle C=90^{\circ}$. The incircle touches $B C$ at E and $E F$ is a diameter of the incircle. Radical $A F$ intersect $B C$ at D. $D E$ equals to the circumradius of $\triangle A B C$. Find $B C$ and $A C$.

2 Find all functions $f, g: R \rightarrow R$ such that $f(x+y g(x))=g(x)+x f(y)$ for $x, y \in R$.
3 Let $A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2} \cdots, b_{n}\right\}$ be two positive integer sets and $|A \cap B|=1$. $C=\{$ all the 2-element subsets of A$\} \cup\{$ all the 2-element subsets of B$\}$. Function $f: A \cup B \rightarrow$ $\left\{0,1,2, \cdots 2 C_{n}^{2}\right\}$ is injective. For any $\{x, y\} \in C$, denote $|f(x)-f(y)|$ as the mark of $\{x, y\}$. If $n \geq 6$, prove that at least two elements in C have the same mark.

- \quad Quiz 5

1 Let S be the set of points inside and on the boarder of a regular haxagon with side length 1. Find the least constant r, such that there exists one way to colour all the points in S with three colous so that the distance between any two points with same colour is less than r.

2 Denote by $(A B C)$ the circumcircle of a triangle $A B C$.
Let $A B C$ be an isosceles right-angled triangle with $A B=A C=1$ and $\measuredangle C A B=90^{\circ}$. Let D be the midpoint of the side $B C$, and let E and F be two points on the side $B C$.
Let M be the point of intersection of the circles $(A D E)$ and $(A B F)$ (apart from A).
Let N be the point of intersection of the line $A F$ and the circle ($A C E$) (apart from A).
Let P be the point of intersection of the line $A D$ and the circle ($A M N$).
Find the length of $A P$.
3 Sequence $\left\{a_{n}\right\}$ satisfies: $a_{1}=3, a_{2}=7, a_{n}^{2}+5=a_{n-1} a_{n+1}, n \geq 2$. If $a_{n}+(-1)^{n}$ is prime, prove that there exists a nonnegative integer m such that $n=3^{m}$.

- Quiz 6

1 Let $g(x)=\sum_{k=1}^{n} a_{k} \cos k x, a_{1}, a_{2}, \cdots, a_{n}, x \in R$. If $g(x) \geq-1$ holds for every $x \in R$, prove that $\sum_{k=1}^{n} a_{k} \leq n$.

2 Positive integer n cannot be divided by 2 and 3, there are no nonnegative integers a and b such that $\left|2^{a}-3^{b}\right|=n$. Find the minimum value of n.

3 (1) D is an arbitary point in $\triangle A B C$. Prove that:

$$
\frac{B C}{\min A D, B D, C D} \geq\left\{\begin{array}{c}
2 \sin A, \angle A<90^{\circ} \\
2, \angle A \geq 90^{\circ}
\end{array}\right.
$$

(2) E is an arbitary point in convex quadrilateral $A B C D$. Denote k the ratio of the largest and least distances of any two points among A, B, C, D, E. Prove that $k \geq 2 \sin 70^{\circ}$. Can equality be achieved?

- \quad Quiz 7

1 There are $n(n \geq 3)$ circles in the plane, all with radius 1 . In among any three circles, at least two have common point(s), then the total area covered by these n circles is less than 35 .

2 Given an integer $a_{1}\left(a_{1} \neq-1\right)$, find a real number sequence $\left\{a_{n}\right\}\left(a_{i} \neq 0, i=1,2, \cdots, 5\right)$ such that $x_{1}, x_{2}, \cdots, x_{5}$ and $y_{1}, y_{2}, \cdots, y_{5}$ satisfy $b_{i 1} x_{1}+b_{i 2} x_{2}+\cdots+b_{i 5} x_{5}=2 y_{i}, i=1,2,3,4,5$, then $x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{5} y_{5}=0$, where $b_{i j}=\prod_{1 \leq k \leq i}\left(1+j a_{k}\right)$.

3 Given S be the finite lattice (with integer coordinate) set in the $x y$-plane. A is the subset of S with most elements such that the line connecting any two points in A is not parallel to x-axis or y-axis. B is the subset of integer with least elements such that for any $(x, y) \in S, x \in B$ or $y \in B$ holds. Prove that $|A| \geq|B|$.

- \quad Quiz 8

1 Triangle $A B C$ is inscribed in circle O. Tangent $P D$ is drawn from A, D is on ray $B C, P$ is on ray $D A$. Line $P U(U \in B D)$ intersects circle O at Q, T, and intersect $A B$ and $A C$ at R and S respectively. Prove that if $Q R=S T$, then $P Q=U T$.

2 Let S be a finite set. f is a function defined on the subset-group 2^{S} of set $S . f$ is called monotonic decreasing if when $X \subseteq Y \subseteq S$, then $f(X) \geq f(Y)$ holds. Prove that: $f(X \cup Y)+f(X \cap Y) \leq f(X)+f(Y)$ for $X, Y \subseteq S$ if and only if $g(X)=f(X \cup\{a\})-f(X)$ is a monotonic decreasing funnction on the subset-group $2^{S \backslash\{a\}}$ of set $S \backslash\{a\}$ for any $a \in S$.

3 Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real number $(n \geq 2)$, not all equal,such that $\sum_{k=1}^{n} a_{k}^{-2 n}=1$, prove that:
$\sum_{k=1}^{n} a_{k}^{2 n}-n^{2} \cdot \sum_{1 \leq i<j \leq n}\left(\frac{a_{i}}{a_{j}}-\frac{a_{j}}{a_{i}}\right)^{2}>n^{2}$

