AoPS Community

Cono Sur Olympiad 2017

www.artofproblemsolving.com/community/c495921
by adrian97, omar31415

Day 1 August 17th

1 A positive integer n is called guayaquilean if the sum of the digits of n is equal to the sum of the digits of n^{2}. Find all the possible values that the sum of the digits of a guayaquilean number can take.

2 Let $A(X Y Z)$ be the area of the triangle $X Y Z$. A non-regular convex polygon $P_{1} P_{2} \ldots P_{n}$ is called guayaco if exists a point O in its interior such that

$$
A\left(P_{1} O P_{2}\right)=A\left(P_{2} O P_{3}\right)=\cdots=A\left(P_{n} O P_{1}\right) .
$$

Show that, for every integer $n \geq 3$, a guayaco polygon of n sides exists.
3 Let n be a positive integer. In how many ways can a $4 \times 4 n$ grid be tiled with the following tetromino?

Day 2 August 18th
4 Let $A B C$ an acute triangle with circumcenter O. Points X and Y are chosen such that:
$-\angle X A B=\angle Y C B=90^{\circ}$
$-\angle A B C=\angle B X A=\angle B Y C$
$-X$ and C are in different half-planes with respect to $A B$
$-Y$ and A are in different half-planes with respect to $B C$
Prove that O is the midpoint of $X Y$.
5 Let a, b and c positive integers. Three sequences are defined as follows:

- $a_{1}=a, b_{1}=b, c_{1}=c$
$-a_{n+1}=\left\lfloor\sqrt{a_{n} b_{n}}\right\rfloor, b_{n+1}=\left\lfloor\sqrt{b_{n} c_{n}}\right\rfloor, c_{n+1}=\left\lfloor\sqrt{c_{n} a_{n}}\right\rfloor$ for $n \geq 1$
-Prove that for any a, b, c, there exists a positive integer N such that $a_{N}=b_{N}=c_{N}$.
-Find the smallest N such that $a_{N}=b_{N}=c_{N}$ for some choice of a, b, c such that $a \geq 2 \mathrm{y}$ $b+c=2 a-1$.

6 The infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ of positive integers is defined as follows: $a_{1}=1$, and for each $n \geq 2, a_{n}$ is the smallest positive integer, distinct from $a_{1}, a_{2}, \ldots, a_{n-1}$ such that:

$$
\sqrt{a_{n}+\sqrt{a_{n-1}+\ldots+\sqrt{a_{2}+\sqrt{a_{1}}}}}
$$

is an integer. Prove that all positive integers appear on the sequence $a_{1}, a_{2}, a_{3}, \ldots$

