

2007 China Team Selection Test

China Team Selection Test 2007

www.artofproblemsolving.com/community/c4963

by April, epitomy01, Fang-jh, shencaili, Peter, Fedor Bakharev, Erken

– TST

Day 1	
1	Points A and B lie on the circle with center O . Let point C lies outside the circle; let CS and CT be tangents to the circle. M be the midpoint of minor arc AB of (O) . MS , MT intersect AB at points E , F respectively. The lines passing through E , F perpendicular to AB cut OS , OT at X and Y respectively. A line passed through C intersect the circle (O) at P , Q (P lies on segment CQ). Let R be the intersection of MP and AB , and let Z be the circumcentre of triangle PQR . Prove that: X , Y , Z are collinear.

2 A rational number x is called *good* if it satisfies: $x = \frac{p}{q} > 1$ with p, q being positive integers, gcd(p,q) = 1 and there exists constant numbers α , N such that for any integer $n \ge N$,

$$|\{x^n\} - \alpha| \le \frac{1}{2(p+q)}$$

Find all the good numbers.

3 There are 63 points arbitrarily on the circle C with its diameter being 20. Let S denote the number of triangles whose vertices are three of the 63 points and the length of its sides is no less than 9. Fine the maximum of S.

Day 2

1 Find all functions $f : \mathbb{Q}^+ \mapsto \mathbb{Q}^+$ such that:

$$f(x) + f(y) + 2xyf(xy) = \frac{f(xy)}{f(x+y)}$$

2 Let x_1, \ldots, x_n be n > 1 real numbers satisfying $A = |\sum_{i=1}^n x_i| \neq 0$ and $B = \max_{1 \le i < j \le n} |x_j - x_i| \neq 0$. Prove that for any n vectors $\vec{\alpha_i}$ in the plane, there exists a permutation (k_1, \ldots, k_n) of the numbers $(1, \ldots, n)$ such that

$$\left|\sum_{i=1}^{n} x_{k_i} \vec{\alpha_i}\right| \ge \frac{AB}{2A+B} \max_{1 \le i \le n} |\alpha_i|.$$

2007 China Team Selection Test

- **3** Let *n* be a positive integer, let *A* be a subset of $\{1, 2, \dots, n\}$, satisfying for any two numbers $x, y \in A$, the least common multiple of *x*, *y* not more than *n*. Show that $|A| \le 1.9\sqrt{n} + 5$.
- Quiz 1
- 1 When all vertex angles of a convex polygon are equal, call it equiangular. Prove that p > 2 is a prime number, if and only if the lengths of all sides of equiangular p polygon are rational numbers, it is a regular p polygon.
- **2** Let *I* be the incenter of triangle *ABC*. Let *M*, *N* be the midpoints of *AB*, *AC*, respectively. Points *D*, *E* lie on *AB*, *AC* respectively such that BD = CE = BC. The line perpendicular to *IM* through *D* intersects the line perpendicular to *IN* through *E* at *P*. Prove that $AP \perp BC$.
- **3** Prove that for any positive integer *n*, there exists only *n* degree polynomial f(x), satisfying f(0) = 1 and $(x + 1)[f(x)]^2 1$ is an odd function.
- Quiz 2
- $\begin{array}{ll} \mathbf{1} & u,v,w>0, \text{such that } u+v+w+\sqrt{uvw}=4 \\ \text{prove that } \sqrt{\frac{uv}{w}}+\sqrt{\frac{vw}{u}}+\sqrt{\frac{wu}{v}} \geq u+v+w \end{array}$
- **2** Find all positive integers n such that there exists sequence consisting of 1 and $-1: a_1, a_2, \cdots, a_n$ satisfying $a_1 \cdot 1^2 + a_2 \cdot 2^2 + \cdots + a_n \cdot n^2 = 0$.
- **3** Assume there are $n \ge 3$ points in the plane, Prove that there exist three points A, B, C satisfying $1 \le \frac{AB}{AC} \le \frac{n+1}{n-1}$.
- Quiz 3
- 1 Let ABC be a triangle. Circle ω passes through points B and C. Circle ω_1 is tangent internally to ω and also to sides AB and AC at T, P, and Q, respectively. Let M be midpoint of arc BC (containing T) of ω . Prove that lines PQ, BC, and MT are concurrent.
- **2** Given an integer k > 1. We call a k-digits decimal integer $a_1a_2 \cdots a_k$ is p-monotonic, if for each of integers i satisfying $1 \le i \le k 1$, when a_i is an odd number, $a_i > a_{i+1}$; when a_i is an even number, $a_i < a_{i+1}$. Find the number of p-monotonic k-digits integers.
- **3** Show that there exists a positive integer k such that $k \cdot 2^n + 1$ is composite for all $n \in \mathbb{N}_0$.
 - Quiz 4

2007 China Team Selection Test

1 Let a_1, a_2, \dots, a_n be positive real numbers satisfying $a_1 + a_2 + \dots + a_n = 1$. Prove that

$$(a_1a_2 + a_2a_3 + \dots + a_na_1)\left(\frac{a_1}{a_2^2 + a_2} + \frac{a_2}{a_3^2 + a_3} + \dots + \frac{a_n}{a_1^2 + a_1}\right) \ge \frac{n}{n+1}$$

- **2** After multiplying out and simplifying polynomial $(x 1)(x^2 1)(x^3 1) \cdots (x^{2007} 1)$, getting rid of all terms whose powers are greater than 2007, we acquire a new polynomial f(x). Find its degree and the coefficient of the term having the highest power. Find the degree of $f(x) = (1 x)(1 x^2)...(1 x^{2007}) \pmod{x^{2008}}$.
- **3** Let *n* be positive integer, $A, B \subseteq [0, n]$ are sets of integers satisfying $|A| + |B| \ge n + 2$. Prove that there exist $a \in A, b \in B$ such that a + b is a power of 2.
- Quiz 5
- 1 Let convex quadrilateral ABCD be inscribed in a circle centers at O. The opposite sides BA, CDmeet at H, the diagonals AC, BD meet at G. Let O_1, O_2 be the circumcenters of triangles $AGD, BGC. O_1O_2$ intersects OG at N. The line HG cuts the circumcircles of triangles AGD, BGCat P, Q, respectively. Denote by M the midpoint of PQ. Prove that NO = NM.
- **2** Given *n* points arbitrarily in the plane P_1, P_2, \ldots, P_n , among them no three points are collinear. Each of P_i ($1 \le i \le n$) is colored red or blue arbitrarily. Let *S* be the set of triangles having $\{P_1, P_2, \ldots, P_n\}$ as vertices, and having the following property: for any two segments P_iP_j and P_uP_v , the number of triangles having P_iP_j as side and the number of triangles having P_uP_v as side are the same in *S*. Find the least *n* such that in *S* there exist two triangles, the vertices of each triangle having the same color.
- **3** Find the smallest constant k such that $\frac{x}{\sqrt{x+y}} + \frac{y}{\sqrt{y+z}} + \frac{z}{\sqrt{z+x}} \le k\sqrt{x+y+z}$

for all positive x, y, z.

- Quiz 6
- **1** Find all the pairs of positive integers (a, b) such that $a^2 + b 1$ is a power of prime number $; a^2 + b + 1$ can divide $b^2 a^3 1$, but it can't divide $(a + b 1)^2$.
- **2** Let ABCD be the inscribed quadrilateral with the circumcircle ω .Let ζ be another circle that internally tangent to ω and to the lines BC and AD at points M, N respectively.Let I_1, I_2 be the incenters of the $\triangle ABC$ and $\triangle ABD$.Prove that M, I_1, I_2, N are collinear.

2007 China Team Selection Test

3 Consider a 7×7 numbers table $a_{ij} = (i^2 + j)(i + j^2), 1 \le i, j \le 7$. When we add arbitrarily each term of an arithmetical progression consisting of 7 integers to corresponding to term of certain row (or column) in turn, call it an operation. Determine whether such that each row of numbers table is an arithmetical progression, after a finite number of operations.

Act of Problem Solving is an ACS WASC Accredited School.