AoPS Community

China Team Selection Test 2007
www.artofproblemsolving.com/community/c4963
by April, epitomy01, Fang-jh, shencaili, Peter, Fedor Bakharev, Erken

- TST

Day 1

1 Points A and B lie on the circle with center O. Let point C lies outside the circle; let $C S$ and $C T$ be tangents to the circle. M be the midpoint of minor arc $A B$ of $(O) . M S, M T$ intersect $A B$ at points E, F respectively. The lines passing through E, F perpendicular to $A B$ cut $O S, O T$ at X and Y respectively.
A line passed through C intersect the circle (O) at P, Q (P lies on segment $C Q$). Let R be the intersection of $M P$ and $A B$, and let Z be the circumcentre of triangle $P Q R$.
Prove that: X, Y, Z are collinear.
2 A rational number x is called good if it satisfies: $x=\frac{p}{q}>1$ with p, q being positive integers, $\operatorname{gcd}(p, q)=1$ and there exists constant numbers α, N such that for any integer $n \geq N$,

$$
\left|\left\{x^{n}\right\}-\alpha\right| \leq \frac{1}{2(p+q)}
$$

Find all the good numbers.
3 There are 63 points arbitrarily on the circle \mathcal{C} with its diameter being 20. Let S denote the number of triangles whose vertices are three of the 63 points and the length of its sides is no less than 9 . Fine the maximum of S.

Day 2

1 Find all functions $f: \mathbb{Q}^{+} \mapsto \mathbb{Q}^{+}$such that:

$$
f(x)+f(y)+2 x y f(x y)=\frac{f(x y)}{f(x+y)} .
$$

2 Let x_{1}, \ldots, x_{n} be $n>1$ real numbers satisfying $A=\left|\sum_{i=1}^{n} x_{i}\right| \neq 0$ and $B=\max _{1 \leq i<j \leq n} \mid x_{j}-$ $x_{i} \mid \neq 0$. Prove that for any n vectors $\overrightarrow{\alpha_{i}}$ in the plane, there exists a permutation $\left(k_{1}, \ldots, k_{n}\right)$ of the numbers $(1, \ldots, n)$ such that

$$
\left|\sum_{i=1}^{n} x_{k_{i}} \overrightarrow{\alpha_{i}}\right| \geq \frac{A B}{2 A+B} \max _{1 \leq i \leq n}\left|\alpha_{i}\right| .
$$

AoPS Community

3 Let n be a positive integer, let A be a subset of $\{1,2, \cdots, n\}$, satisfying for any two numbers $x, y \in A$, the least common multiple of x, y not more than n. Show that $|A| \leq 1.9 \sqrt{n}+5$.

- Quiz 1

1 When all vertex angles of a convex polygon are equal, call it equiangular. Prove that $p>2$ is a prime number, if and only if the lengths of all sides of equiangular p polygon are rational numbers, it is a regular p polygon.

2 Let I be the incenter of triangle $A B C$. Let M, N be the midpoints of $A B, A C$, respectively. Points D, E lie on $A B, A C$ respectively such that $B D=C E=B C$. The line perpendicular to $I M$ through D intersects the line perpendicular to $I N$ through E at P. Prove that $A P \perp B C$.

3 Prove that for any positive integer n, there exists only n degree polynomial $f(x)$, satisfying $f(0)=1$ and $(x+1)[f(x)]^{2}-1$ is an odd function.

- \quad Quiz 2
$1 \quad u, v, w>0$,such that $u+v+w+\sqrt{u v w}=4$
prove that $\sqrt{\frac{u v}{w}}+\sqrt{\frac{v w}{u}}+\sqrt{\frac{w u}{v}} \geq u+v+w$
2 Find all positive integers n such that there exists sequence consisting of 1 and -1: $a_{1}, a_{2}, \cdots, a_{n}$ satisfying $a_{1} \cdot 1^{2}+a_{2} \cdot 2^{2}+\cdots+a_{n} \cdot n^{2}=0$.

3 Assume there are $n \geq 3$ points in the plane, Prove that there exist three points A, B, C satisfying $1 \leq \frac{A B}{A C} \leq \frac{n+1}{n-1}$.

- \quad Quiz 3

1 Let $A B C$ be a triangle. Circle ω passes through points B and C. Circle ω_{1} is tangent internally to ω and also to sides $A B$ and $A C$ at T, P, and Q, respectively. Let M be midpoint of arc $B C$ (containing T) of ω. Prove that lines $P Q, B C$, and $M T$ are concurrent.

2 Given an integer $k>1$. We call a k-digits decimal integer $a_{1} a_{2} \cdots a_{k}$ is p-monotonic, if for each of integers i satisfying $1 \leq i \leq k-1$, when a_{i} is an odd number, $a_{i}>a_{i+1}$; when a_{i} is an even number, $a_{i}<a_{i+1}$. Find the number of p-monotonic k-digits integers.

3 Show that there exists a positive integer k such that $k \cdot 2^{n}+1$ is composite for all $n \in \mathbb{N}_{0}$.

- \quad Quiz 4

AoPS Community

2007 China Team Selection Test

1 Let $a_{1}, a_{2}, \cdots, a_{n}$ be positive real numbers satisfying $a_{1}+a_{2}+\cdots+a_{n}=1$. Prove that

$$
\left(a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{n} a_{1}\right)\left(\frac{a_{1}}{a_{2}^{2}+a_{2}}+\frac{a_{2}}{a_{3}^{2}+a_{3}}+\cdots+\frac{a_{n}}{a_{1}^{2}+a_{1}}\right) \geq \frac{n}{n+1}
$$

2 After multiplying out and simplifying polynomial $(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right) \cdots\left(x^{2007}-1\right)$, getting rid of all terms whose powers are greater than 2007, we acquire a new polynomial $f(x)$. Find its degree and the coefficient of the term having the highest power. Find the degree of $f(x)=$ $(1-x)\left(1-x^{2}\right) \ldots\left(1-x^{2007}\right)\left(\bmod x^{2008}\right)$.

3 Let n be positive integer, $A, B \subseteq[0, n]$ are sets of integers satisfying $|A|+|B| \geq n+2$. Prove that there exist $a \in A, b \in B$ such that $a+b$ is a power of 2 .

- \quad Quiz 5

1 Let convex quadrilateral $A B C D$ be inscribed in a circle centers at O. The opposite sides $B A, C D$ meet at H, the diagonals $A C, B D$ meet at G. Let O_{1}, O_{2} be the circumcenters of triangles $A G D, B G C . O_{1} O_{2}$ intersects $O G$ at N. The line $H G$ cuts the circumcircles of triangles $A G D, B G C$ at P, Q, respectively. Denote by M the midpoint of $P Q$. Prove that $N O=N M$.

2 Given n points arbitrarily in the plane $P_{1}, P_{2}, \ldots, P_{n}$, among them no three points are collinear. Each of $P_{i}(1 \leq i \leq n)$ is colored red or blue arbitrarily. Let S be the set of triangles having $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ as vertices, and having the following property. for any two segments $P_{i} P_{j}$ and $P_{u} P_{v}$, the number of triangles having $P_{i} P_{j}$ as side and the number of triangles having $P_{u} P_{v}$ as side are the same in S. Find the least n such that in S there exist two triangles, the vertices of each triangle having the same color.

3 Find the smallest constant k such that
$\frac{x}{\sqrt{x+y}}+\frac{y}{\sqrt{y+z}}+\frac{z}{\sqrt{z+x}} \leq k \sqrt{x+y+z}$
for all positive x, y, z.

- \quad Quiz 6

1 Find all the pairs of positive integers (a, b) such that $a^{2}+b-1$ is a power of prime number $; a^{2}+b+1$ can divide $b^{2}-a^{3}-1$, but it can't divide $(a+b-1)^{2}$.

2 Let $A B C D$ be the inscribed quadrilateral with the circumcircle ω. Let ζ be another circle that internally tangent to ω and to the lines $B C$ and $A D$ at points M, N respectively. Let I_{1}, I_{2} be the incenters of the $\triangle A B C$ and $\triangle A B D$. Prove that M, I_{1}, I_{2}, N are collinear.

3 Consider a 7×7 numbers table $a_{i j}=\left(i^{2}+j\right)\left(i+j^{2}\right), 1 \leq i, j \leq 7$. When we add arbitrarily each term of an arithmetical progression consisting of 7 integers to corresponding to term of certain row (or column) in turn, call it an operation. Determine whether such that each row of numbers table is an arithmetical progression, after a finite number of operations.

