Art of Problem Solving

AoPS Community

China Team Selection Test 2009

www.artofproblemsolving.com/community/c4965
by Fang-jh, math10

- TST

1 Let $A B C$ be a triangle. Point D lies on its sideline $B C$ such that $\angle C A D=\angle C B A$. Circle (O) passing through B, D intersects $A B, A D$ at E, F, respectively. $B F$ meets $D E$ at G.Denote by M the midpoint of $A G$. Show that $C M \perp A O$.

2 Given an integer $n \geq 2$, find the maximal constant $\lambda(n)$ having the following property: if a sequence of real numbers $a_{0}, a_{1}, a_{2}, \cdots, a_{n}$ satisfies $0=a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$, and $a_{i} \geq \frac{1}{2}\left(a_{i+1}+a_{i-1}\right), i=1,2, \cdots, n-1$, then $\left(\sum_{i=1}^{n} i a_{i}\right)^{2} \geq \lambda(n) \sum_{i=1}^{n} a_{i}^{2}$.

3 Prove that for any odd prime number p, the number of positive integer n satisfying $p \mid n!+1$ is less than or equal to $c p^{\frac{2}{3}}$. where c is a constant independent of p.

4 Let positive real numbers a, b satisfy $b-a>2$. Prove that for any two distinct integers m, n belonging to $[a, b)$, there always exists non-empty set S consisting of certain integers belonging
to $[a b,(a+1)(b+1))$ such that $\frac{x \in S}{m n}$ is square of a rational number.
$5 \quad$ Let $m>1$ be an integer, n is an odd number satisfying $3 \leq n<2 m$, number $a_{i, j}(i, j \in N, 1 \leq$ $i \leq m, 1 \leq j \leq n$) satisfies (1) for any $1 \leq j \leq n, a_{1, j}, a_{2, j}, \cdots, a_{m, j}$ is a permutation of $1,2,3, \cdots, m$; (2) for any $1<i \leq m, 1 \leq j \leq n-1,\left|a_{i, j}-a_{i, j+1}\right| \leq 1$ holds. Find the minimal value of M, where $M=\max _{1<i<m} \sum_{j=1}^{n} a_{i, j}$.

6 Determine whether there exists an arithimethical progression consisting of 40 terms and each of whose terms can be written in the form $2^{m}+3^{n}$ or not. where m, n are nonnegative integers.

- Quiz 1

1 Given that circle ω is tangent internally to circle Γ at $S . \omega$ touches the chord $A B$ of Γ at T. Let O be the center of ω. Point P lies on the line $A O$. Show that $P B \perp A B$ if and only if $P S \perp T S$.

2 Let n, k be given positive integers satisfying $k \leq 2 n-1$. On a table tennis tournament $2 n$ players take part, they play a total of k rounds match, each round is divided into n groups, each group two players match. The two players in different rounds can match on many occasions. Find the greatest positive integer $m=f(n, k)$ such that no matter how the tournament processes, we always find m players each of pair of which didn't match each other.

AoPS Community

3 Let $x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{n}$ be positive real numbers. Denote by $X=\sum_{i=1}^{m} x, Y=\sum_{j=1}^{n} y$. Prove that $2 X Y \sum_{i=1}^{m} \sum_{j=1}^{n}\left|x_{i}-y_{j}\right| \geq X^{2} \sum_{j=1}^{n} \sum_{l=1}^{n}\left|y_{i}-y_{l}\right|+Y^{2} \sum_{i=1}^{m} \sum_{k=1}^{m}\left|x_{i}-x_{k}\right|$

- \quad Quiz 2

1 In convex pentagon $A B C D E$, denote by $A D \cap B E=F, B E \cap C A=G, C A \cap D B=H, D B \cap$ $E C=I, E C \cap A D=J ; A I \cap B E=A^{\prime}, B J=B^{\prime}, C F=C^{\prime}, D G \cap E C=D^{\prime}, E H \cap A D=E^{\prime}$. Prove that $\frac{A B^{\prime}}{B^{\prime} C} \cdot \frac{C D^{\prime}}{D^{\prime} E} \cdot \frac{E A^{\prime}}{A^{\prime} B} \cdot \frac{B C^{\prime}}{C^{\prime} D} \cdot \frac{D E^{\prime}}{E^{\prime} A}=1$.

2 Find all the pairs of integers (a, b) satisfying $a b(a-b) \neq 0$ such that there exists a subset Z_{0} of set of integers Z, for any integer n, exactly one among three integers $n, n+a, n+b$ belongs to Z_{0}.

3 Consider function $f: R \rightarrow R$ which satisfies the conditions for any mutually distinct real numbers a, b, c, d satisfying $\frac{a-b}{b-c}+\frac{a-d}{d-c}=0, f(a), f(b), f(c), f(d)$ are mutully different and $\frac{f(a)-f(b)}{f(b)-f(c)}+$ $\frac{f(a)-f(d)}{f(d)-f(c)}=0$. Prove that function f is linear

- \quad Quiz 3

1 Let α, β be real numbers satisfying $1<\alpha<\beta$. Find the greatest positive integer r having the following property: each of positive integers is colored by one of r colors arbitrarily, there always exist two integers x, y having the same color such that $\alpha \leq \frac{x}{y} \leq \beta$.

2 In convex quadrilateral $A B C D, C B, D A$ are external angle bisectors of $\angle D C A, \angle C D B$, respectively. Points E, F lie on the rays $A C, B D$ respectively such that $C E F D$ is cyclic quadrilateral. Point P lie in the plane of quadrilateral $A B C D$ such that $D A, C B$ are external angle bisectors of $\angle P D E, \angle P C F$ respectively. $A D$ intersects $B C$ at Q. Prove that P lies on $A B$ if and only if Q lies on segment $E F$.

3 Let $f(x)$ be a n-degree polynomial all of whose coefficients are equal to ± 1, and having $x=1$ as its m multiple root. If $m \geq 2^{k}(k \geq 2, k \in N)$, then $n \geq 2^{k+1}-1$.

- Quiz 4

1 Given that points D, E lie on the sidelines $A B, B C$ of triangle $A B C$, respectively, point P is in interior of triangle $A B C$ such that $P E=P C$ and $\triangle D E P \sim \triangle P C A$. Prove that $B P$ is tangent of the circumcircle of triangle $P A D$.

2 Find all integers $n \geq 2$ having the following property: for any k integers $a_{1}, a_{2}, \cdots, a_{k}$ which aren't congruent to each other (modulo n), there exists an integer polynomial $f(x)$ such that congruence equation $f(x) \equiv 0(\bmod n)$ exactly has k roots $x \equiv a_{1}, a_{2}, \cdots, a_{k}(\bmod n)$.

2009 China Team Selection Test

$3 \quad$ Let X be a set containing $2 k$ elements, F is a set of subsets of X consisting of certain k elements such that any one subset of X consisting of $k-1$ elements is exactly contained in an element of F. Show that $k+1$ is a prime number.

- \quad Quiz 5

1 Let n be a composite. Prove that there exists positive integer m satisfying $m \mid n, m \leq \sqrt{n}$, and $d(n) \leq d^{3}(m)$. Where $d(k)$ denotes the number of positive divisors of positive integer k.

2 In acute triangle $A B C$, points P, Q lie on its sidelines $A B, A C$, respectively. The circumcircle of triangle $A B C$ intersects of triangle $A P Q$ at X (different from A). Let Y be the reflection of X in line $P Q$. Given $P X>P B$. Prove that $S_{\triangle X P Q}>S_{\triangle Y B C}$. Where $S_{\triangle X Y Z}$ denotes the area of triangle $X Y Z$.

3 Let nonnegative real numbers $a_{1}, a_{2}, a_{3}, a_{4}$ satisfy $a_{1}+a_{2}+a_{3}+a_{4}=1$. Prove that $\max \left\{\sum_{1}^{4} \sqrt{a_{i}^{2}+a_{i} a_{i-1}+c}\right.$ 2.

Where for all integers $i, a_{i+4}=a_{i}$ holds.

- \quad Quiz 6

1 Let $a>b>1, b$ is an odd number, let n be a positive integer. If $b^{n} \mid a^{n}-1$, then $a^{b}>\frac{3^{n}}{n}$.
2 Find all complex polynomial $P(x)$ such that for any three integers a, b, c satisfying $a+b+c \neq$ $0, \frac{P(a)+P(b)+P(c)}{a+b+c}$ is an integer.

3 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive integers satisfying $\left(a_{m}, a_{n}\right)=a_{(m, n)}$ (for all $m, n \in N^{+}$). Prove that for any $n \in N^{+}, \prod_{d \mid n} a_{d}^{\mu\left(\frac{n}{d}\right)}$ is an integer. where $d \mid n$ denotes d take all positive divisors of n. Function $\mu(n)$ is defined as follows: if n can be divided by square of certain prime number, then $\mu(1)=1 ; \mu(n)=0$; if n can be expressed as product of k different prime numbers, then $\mu(n)=(-1)^{k}$.

