

AoPS Community

2009 China Team Selection Test

China Team Selection Test 2009

www.artofproblemsolving.com/community/c4965 by Fang-jh, math10

- TST
- **1** Let ABC be a triangle. Point D lies on its sideline BC such that $\angle CAD = \angle CBA$. Circle (O) passing through B, D intersects AB, AD at E, F, respectively. BF meets DE at G.Denote by M the midpoint of AG. Show that $CM \perp AO$.
- **2** Given an integer $n \ge 2$, find the maximal constant $\lambda(n)$ having the following property: if a sequence of real numbers $a_0, a_1, a_2, \dots, a_n$ satisfies $0 = a_0 \le a_1 \le a_2 \le \dots \le a_n$, and $a_i \ge \frac{1}{2}(a_{i+1} + a_{i-1}), i = 1, 2, \dots, n-1$, then $(\sum_{i=1}^n ia_i)^2 \ge \lambda(n) \sum_{i=1}^n a_i^2$.
- **3** Prove that for any odd prime number p, the number of positive integer n satisfying p|n! + 1 is less than or equal to $cp^{\frac{2}{3}}$. where c is a constant independent of p.
- 4 Let positive real numbers a, b satisfy b-a > 2. Prove that for any two distinct integers m, n belonging to [a, b), there always exists non-empty set S consisting of certain integers belonging Π

to [ab, (a+1)(b+1)) such that $\frac{x \in S}{mn}$ is square of a rational number.

- **5** Let m > 1 be an integer, n is an odd number satisfying $3 \le n < 2m$, number $a_{i,j}(i, j \in N, 1 \le i \le m, 1 \le j \le n)$ satisfies (1) for any $1 \le j \le n, a_{1,j}, a_{2,j}, \cdots, a_{m,j}$ is a permutation of $1, 2, 3, \cdots, m$; (2) for any $1 < i \le m, 1 \le j \le n 1, |a_{i,j} a_{i,j+1}| \le 1$ holds. Find the minimal value of M, where $M = max_{1 \le i \le m} \sum_{j=1}^{n} a_{i,j}$.
- **6** Determine whether there exists an arithimethical progression consisting of 40 terms and each of whose terms can be written in the form $2^m + 3^n$ or not. where m, n are nonnegative integers.

_	Quiz 1
	Quizi

- **1** Given that circle ω is tangent internally to circle Γ at S. ω touches the chord AB of Γ at T. Let O be the center of ω . Point P lies on the line AO. Show that $PB \perp AB$ if and only if $PS \perp TS$.
- 2 Let n, k be given positive integers satisfying $k \le 2n-1$. On a table tennis tournament 2n players take part, they play a total of k rounds match, each round is divided into n groups, each group two players match. The two players in different rounds can match on many occasions. Find the greatest positive integer m = f(n, k) such that no matter how the tournament processes, we always find m players each of pair of which didn't match each other.

3	Let $x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n$ be positive real numbers. Denote by $X = \sum_{i=1}^m x, Y = \sum_{j=1}^n y$. Prove that $2XY \sum_{i=1}^m \sum_{j=1}^n x_i - y_j \ge X^2 \sum_{j=1}^n \sum_{l=1}^n y_i - y_l + Y^2 \sum_{i=1}^m \sum_{k=1}^m x_i - x_k $
-	Quiz 2
1	In convex pentagon $ABCDE$, denote by $AD \cap BE = F$, $BE \cap CA = G$, $CA \cap DB = H$, $DB \cap EC = I$, $EC \cap AD = J$; $AI \cap BE = A'$, $BJ = B'$, $CF = C'$, $DG \cap EC = D'$, $EH \cap AD = E'$. Prove that $\frac{AB'}{B'C} \cdot \frac{CD'}{D'E} \cdot \frac{EA'}{A'B} \cdot \frac{BC'}{C'D} \cdot \frac{DE'}{E'A} = 1$.
2	Find all the pairs of integers (a, b) satisfying $ab(a - b) \neq 0$ such that there exists a subset Z_0 of set of integers Z , for any integer n , exactly one among three integers $n, n + a, n + b$ belongs to Z_0 .
3	Consider function $f : R \to R$ which satisfies the conditions for any mutually distinct real numbers a, b, c, d satisfying $\frac{a-b}{b-c} + \frac{a-d}{d-c} = 0$, $f(a), f(b), f(c), f(d)$ are mutully different and $\frac{f(a)-f(b)}{f(b)-f(c)} + \frac{f(a)-f(d)}{f(d)-f(c)} = 0$. Prove that function f is linear
-	Quiz 3
1	Let α, β be real numbers satisfying $1 < \alpha < \beta$. Find the greatest positive integer r having the following property: each of positive integers is colored by one of r colors arbitrarily, there always exist two integers x, y having the same color such that $\alpha \leq \frac{x}{y} \leq \beta$.
2	In convex quadrilateral $ABCD$, CB , DA are external angle bisectors of $\angle DCA$, $\angle CDB$, respectively. Points E , F lie on the rays AC , BD respectively such that $CEFD$ is cyclic quadrilateral. Point P lie in the plane of quadrilateral $ABCD$ such that DA , CB are external angle bisectors of $\angle PDE$, $\angle PCF$ respectively. AD intersects BC at Q . Prove that P lies on AB if and only if Q lies on segment EF .
3	Let $f(x)$ be a n -degree polynomial all of whose coefficients are equal to ± 1 , and having $x = 1$ as its m multiple root. If $m \ge 2^k (k \ge 2, k \in N)$, then $n \ge 2^{k+1} - 1$.
-	Quiz 4
1	Given that points D, E lie on the sidelines AB, BC of triangle ABC , respectively, point P is in interior of triangle ABC such that $PE = PC$ and $\triangle DEP \sim \triangle PCA$. Prove that BP is tangent of the circumcircle of triangle PAD .
2	Find all integers $n \ge 2$ having the following property: for any k integers a_1, a_2, \dots, a_k which aren't congruent to each other (modulo n), there exists an integer polynomial $f(x)$ such that congruence equation $f(x) \equiv 0 \pmod{n}$ exactly has k roots $x \equiv a_1, a_2, \dots, a_k \pmod{n}$.

AoPS Community

_

_

2009 China Team Selection Test

3	Let X be a set containing $2k$ elements, F is a set of subsets of X consisting of certain k elements such that any one subset of X consisting of $k - 1$ elements is exactly contained in an element of F. Show that $k + 1$ is a prime number.
-	Quiz 5
1	Let <i>n</i> be a composite. Prove that there exists positive integer <i>m</i> satisfying $m n, m \le \sqrt{n}$, and $d(n) \le d^3(m)$. Where $d(k)$ denotes the number of positive divisors of positive integer <i>k</i> .
2	In acute triangle <i>ABC</i> , points <i>P</i> , <i>Q</i> lie on its sidelines <i>AB</i> , <i>AC</i> , respectively. The circumcircle of triangle <i>ABC</i> intersects of triangle <i>APQ</i> at <i>X</i> (different from <i>A</i>). Let <i>Y</i> be the reflection of <i>X</i> in line <i>PQ</i> . Given <i>PX</i> > <i>PB</i> . Prove that $S_{\triangle XPQ} > S_{\triangle YBC}$. Where $S_{\triangle XYZ}$ denotes the area of triangle <i>XYZ</i> .
3	Let nonnegative real numbers a_1, a_2, a_3, a_4 satisfy $a_1+a_2+a_3+a_4 = 1$. Prove that $max\{\sum_{i=1}^{4} \sqrt{a_i^2 + a_i a_i^2}, a_i = a_i \}$. Where for all integers $i, a_{i+4} = a_i$ holds.
-	Quiz 6
1	Let $a > b > 1, b$ is an odd number, let n be a positive integer. If $b^n a^n - 1$, then $a^b > \frac{3^n}{n}$.
2	Find all complex polynomial $P(x)$ such that for any three integers a, b, c satisfying $a + b + c \neq 0$, $\frac{P(a)+P(b)+P(c)}{a+b+c}$ is an integer.
3	Let $(a_n)_{n\geq 1}$ be a sequence of positive integers satisfying $(a_m, a_n) = a_{(m,n)}$ (for all $m, n \in N^+$). Prove that for any $n \in N^+$, $\prod_{d n} a_d^{\mu(\frac{n}{d})}$ is an integer. where $d n$ denotes d take all positive divisors of n . Function $\mu(n)$ is defined as follows: if n can be divided by square of certain prime number, then $\mu(1) = 1$; $\mu(n) = 0$; if n can be expressed as product of k different prime numbers, then $\mu(n) = (-1)^k$.

Act of Problem Solving is an ACS WASC Accredited School.