AoPS Community

China Team Selection Test 2010
www.artofproblemsolving.com/community/c4966
by agzqu, orl

- \quad Quiz 1

Day 1

1 Assume real numbers $a_{i}, b_{i}(i=0,1, \cdots, 2 n)$ satisfy the following conditions:
(1) for $i=0,1, \cdots, 2 n-1$, we have $a_{i}+a_{i+1} \geq 0$;
(2) for $j=0,1, \cdots, n-1$, we have $a_{2 j+1} \leq 0$;
(2) for any integer $p, q, 0 \leq p \leq q \leq n$, we have $\sum_{k=2 p}^{2 q} b_{k}>0$.

Prove that $\sum_{i=0}^{2 n}(-1)^{i} a_{i} b_{i} \geq 0$, and determine when the equality holds.
2 Let $A B C D$ be a convex quadrilateral. Assume line $A B$ and $C D$ intersect at E, and B lies between A and E. Assume line $A D$ and $B C$ intersect at F, and D lies between A and F. Assume the circumcircles of $\triangle B E C$ and $\triangle C F D$ intersect at C and P. Prove that $\angle B A P=\angle C A D$ if and only if $B D \| E F$.

3 Fine all positive integers $m, n \geq 2$, such that
(1) $m+1$ is a prime number of type $4 k-1$;
(2) there is a (positive) prime number p and nonnegative integer a, such that

$$
\frac{m^{2^{n}-1}-1}{m-1}=m^{n}+p^{a} .
$$

Day 2

1 Let $\triangle A B C$ be an acute triangle with $A B>A C$, let I be the center of the incircle. Let M, N be the midpoint of $A C$ and $A B$ respectively. D, E are on $A C$ and $A B$ respectively such that $B D \| I M$ and $C E \| I N$. A line through I parallel to $D E$ intersects $B C$ in P. Let Q be the projection of P on line $A I$. Prove that Q is on the circumcircle of $\triangle A B C$.

2 Let $M=\{1,2, \cdots, n\}$, each element of M is colored in either red, blue or yellow. Set $A=$ $\{(x, y, z) \in M \times M \times M \mid x+y+z \equiv 0 \bmod n, x, y, z$ are of same color $\}, B=\{(x, y, z) \in$ $M \times M \times M \mid x+y+z \equiv 0 \bmod n, x, y, z$ are of pairwise distinct color $\}$.
Prove that $2|A| \geq|B|$.
3 Let A be a finite set, and $A_{1}, A_{2}, \cdots, A_{n}$ are subsets of A with the following conditions:
(1) $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=\left|A_{n}\right|=k$, and $k>\frac{|A|}{2}$;
(2) for any $a, b \in A$, there exist $A_{r}, A_{s}, A_{t}(1 \leq r<s<t \leq n)$ such that $a, b \in A_{r} \cap A_{s} \cap A_{t}$;
(3) for any integer $i, j(1 \leq i<j \leq n),\left|A_{i} \cap A_{j}\right| \leq 3$.

Find all possible value(s) of n when k attains maximum among all possible systems $\left(A_{1}, A_{2}, \cdots, A_{n}, A\right)$.

- \quad Quiz 2

Day 1

1 Let $A B C D$ be a convex quadrilateral with A, B, C, D concyclic. Assume $\angle A D C$ is acute and $\frac{A B}{B C}=\frac{D A}{C D}$. Let Γ be a circle through A and D, tangent to $A B$, and let E be a point on Γ and inside $A B C D$.
Prove that $A E \perp E C$ if and only if $\frac{A E}{A B}-\frac{E D}{A D}=1$.
2 Given positive integer n, find the largest real number $\lambda=\lambda(n)$, such that for any degree n polynomial with complex coefficients $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, and any permutation $x_{0}, x_{1}, \cdots, x_{n}$ of $0,1, \cdots, n$, the following inequality holds $\sum_{k=0}^{n} \mid f\left(x_{k}\right)-$ $f\left(x_{k+1}\right)|\geq \lambda| a_{n} \mid$, where $x_{n+1}=x_{0}$.

3 Let $k>1$ be an integer, set $n=2^{k+1}$. Prove that for any positive integers $a_{1}<a_{2}<\cdots<a_{n}$, the number $\prod_{1 \leq i<j \leq n}\left(a_{i}+a_{j}\right)$ has at least $k+1$ different prime divisors.

Day 2

1 Let $\triangle A B C$ be an acute triangle, and let D be the projection of A on $B C$. Let M, N be the midpoints of $A B$ and $A C$ respectively. Let Γ_{1} and Γ_{2} be the circumcircles of $\triangle B D M$ and $\triangle C D N$ respectively, and let K be the other intersection point of Γ_{1} and Γ_{2}. Let P be an arbitrary point on $B C$ and E, F are on $A C$ and $A B$ respectively such that $P E A F$ is a parallelogram. Prove that if $M N$ is a common tangent line of Γ_{1} and Γ_{2}, then K, E, A, F are concyclic.

2 Find all positive real numbers λ such that for all integers $n \geq 2$ and all positive real numbers $a_{1}, a_{2}, \cdots, a_{n}$ with $a_{1}+a_{2}+\cdots+a_{n}=n$, the following inequality holds: $\sum_{i=1}^{n} \frac{1}{a_{i}}-\lambda \prod_{i=1}^{n} \frac{1}{a_{i}} \leq$ $n-\lambda$.

3 For integers $n>1$, define $f(n)$ to be the sum of all postive divisors of n that are less than n. Prove that for any positive integer k, there exists a positive integer $n>1$ such that $n<f(n)<$ $f^{2}(n)<\cdots<f^{k}(n)$, where $f^{i}(n)=f\left(f^{i-1}(n)\right)$ for $i>1$ and $f^{1}(n)=f(n)$.

- \quad Quiz 3

Day 1

AoPS Community

2010 China Team Selection Test

1 Given integer $n \geq 2$ and positive real number a, find the smallest real number $M=M(n, a)$, such that for any positive real numbers $x_{1}, x_{2}, \cdots, x_{n}$ with $x_{1} x_{2} \cdots x_{n}=1$, the following inequality holds:

$$
\sum_{i=1}^{n} \frac{1}{a+S-x_{i}} \leq M
$$

where $S=\sum_{i=1}^{n} x_{i}$.
2 In a football league, there are $n \geq 6$ teams. Each team has a homecourt jersey and a road jersey with different color. When two teams play, the home team always wear homecourt jersey and the road team wear their homecourt jersey if the color is different from the home team's homecourt jersey, or otherwise the road team shall wear their road jersey. It is required that in any two games with 4 different teams, the 4 teams' jerseys have at least 3 different color. Find the least number of color that the n teams' $2 n$ jerseys may use.

3 Given positive integer k, prove that there exists a positive integer N depending only on k such that for any integer $n \geq N,\binom{n}{k}$ has at least k different prime divisors.

Day 2

1 Let ω be a semicircle and $A B$ its diameter. ω_{1} and ω_{2} are two different circles, both tangent to ω and to $A B$, and ω_{1} is also tangent to ω_{2}. Let P, Q be the tangent points of ω_{1} and ω_{2} to $A B$ respectively, and P is between A and Q. Let C be the tangent point of ω_{1} and ω. Find $\tan \angle A C Q$.

2 Prove that there exists a sequence of unbounded positive integers $a_{1} \leq a_{2} \leq a_{3} \leq \cdots$, such that there exists a positive integer M with the following property: for any integer $n \geq M$, if $n+1$ is not prime, then any prime divisor of $n!+1$ is greater than $n+a_{n}$.

3 An (unordered) partition P of a positive integer n is an n-tuple of nonnegative integers $P=$ $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that $\sum_{k=1}^{n} k x_{k}=n$. For positive integer $m \leq n$, and a partition $Q=$ $\left(y_{1}, y_{2}, \cdots, y_{m}\right)$ of m, Q is called compatible to P if $y_{i} \leq x_{i}$ for $i=1,2, \cdots, m$. Let $S(n)$ be the number of partitions P of n such that for each odd $m<n, m$ has exactly one partition compatible to P and for each even $m<n, m$ has exactly two partitions compatible to P. Find $S(2010)$.

- TST 1

1 Given acute triangle $A B C$ with $A B>A C$, let M be the midpoint of $B C . P$ is a point in triangle $A M C$ such that $\angle M A B=\angle P A C$. Let O, O_{1}, O_{2} be the circumcenters of $\triangle A B C, \triangle A B P, \triangle A C P$ respectively. Prove that line $A O$ passes through the midpoint of $O_{1} O_{2}$.

2 Let $A=\left\{a_{1}, a_{2}, \cdots, a_{2010}\right\}$ and $B=\left\{b_{1}, b_{2}, \cdots, b_{2010}\right\}$ be two sets of complex numbers. Suppose

$$
\sum_{1 \leq i<j \leq 2010}\left(a_{i}+a_{j}\right)^{k}=\sum_{1 \leq i<j \leq 2010}\left(b_{i}+b_{j}\right)^{k}
$$

holds for every $k=1,2, \cdots, 2010$. Prove that $A=B$.
3 Let $n_{1}, n_{2}, \cdots, n_{26}$ be pairwise distinct positive integers satisfying
(1) for each n_{i}, its digits belong to the set $\{1,2\}$;
(2) for each i, j, n_{i} can't be obtained from n_{j} by adding some digits on the right.

Find the smallest possible value of $\sum_{i=1}^{26} S\left(n_{i}\right)$, where $S(m)$ denotes the sum of all digits of a positive integer m.

- TST 2

$1 \quad$ Let $G=G(V, E)$ be a simple graph with vertex set V and edge set E. Suppose $|V|=n$. A map $f: V \rightarrow \mathbb{Z}$ is called good, if f satisfies the followings:
(1) $\sum_{v \in V} f(v)=|E|$;
(2) color arbitarily some vertices into red, one can always find a red vertex v such that $f(v)$ is no more than the number of uncolored vertices adjacent to v.
Let $m(G)$ be the number of good maps. Prove that if every vertex in G is adjacent to at least one another vertex, then $n \leq m(G) \leq n$!.

2 Given integer $a_{1} \geq 2$. For integer $n \geq 2$, define a_{n} to be the smallest positive integer which is not coprime to a_{n-1} and not equal to $a_{1}, a_{2}, \cdots, a_{n-1}$. Prove that every positive integer except 1 appears in this sequence $\left\{a_{n}\right\}$.

3 Given integer $n \geq 2$ and real numbers $x_{1}, x_{2}, \cdots, x_{n}$ in the interval [0,1$]$. Prove that there exist real numbers $a_{0}, a_{1}, \cdots, a_{n}$ satisfying the following conditions:
(1) $a_{0}+a_{n}=0$;
(2) $\left|a_{i}\right| \leq 1$, for $i=0,1, \cdots, n$;
(3) $\left|a_{i}-a_{i-1}\right|=x_{i}$, for $i=1,2, \cdots, n$.

