AoPS Community

China Team Selection Test 2011
www.artofproblemsolving.com/community/c4967
by yunxiu, WakeUp, Amir Hossein

- \quad Quiz 1

Day 1

1 In $\triangle A B C$ we have $B C>C A>A B$. The nine point circle is tangent to the incircle, A-excircle, B-excircle and C-excircle at the points T, T_{A}, T_{B}, T_{C} respectively. Prove that the segments $T T_{B}$ and lines $T_{A} T_{C}$ intersect each other.

2 Let S be a set of n points in the plane such that no four points are collinear. Let $\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}$ be the set of distances between pairs of distinct points in S, and let m_{i} be the multiplicity of d_{i}, i.e. the number of unordered pairs $\{P, Q\} \subseteq S$ with $|P Q|=d_{i}$. Prove that $\sum_{i=1}^{k} m_{i}^{2} \leq n^{3}-n^{2}$.

3 A positive integer n is known as an interesting number if n satisfies

$$
\left\{\frac{n}{10^{k}}\right\}>\frac{n}{10^{10}}
$$

for all $k=1,2, \ldots 9$.
Find the number of interesting numbers.

Day 2

1 Let one of the intersection points of two circles with centres O_{1}, O_{2} be P. A common tangent touches the circles at A, B respectively. Let the perpendicular from A to the line $B P$ meet $O_{1} O_{2}$ at C. Prove that $A P \perp P C$.

2 Let n be a positive integer and let α_{n} be the number of 1 's within binary representation of n.
Show that for all positive integers r,

$$
2^{2 n-\alpha_{n}} \left\lvert\, \sum_{k=-n}^{n}\binom{2 n}{n+k} k^{2 r} .\right.
$$

3 For a given integer $n \geq 2$, let $a_{0}, a_{1}, \ldots, a_{n}$ be integers satisfying $0=a_{0}<a_{1}<\ldots<a_{n}=2 n-1$. Find the smallest possible number of elements in the set $\left\{a_{i}+a_{j} \mid 0 \leq i \leq j \leq n\right\}$.

- \quad Quiz 2

Day 1

1 Let $n \geq 2$ be a given integer. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-f(y))=f\left(x+y^{n}\right)+f\left(f(y)+y^{n}\right), \quad \forall x, y \in \mathbb{R}
$$

2 Let ℓ be a positive integer, and let m, n be positive integers with $m \geq n$, such that $A_{1}, A_{2}, \cdots, A_{m}, B_{1}, \cdots, B_{m}$ are $m+n$ pairwise distinct subsets of the set $\{1,2, \cdots, \ell\}$. It is known that $A_{i} \Delta B_{j}$ are pairwise distinct, $1 \leq i \leq m, 1 \leq j \leq n$, and runs over all nonempty subsets of $\{1,2, \cdots, \ell\}$. Find all possible values of m, n.

3 For any positive integer d, prove there are infinitely many positive integers n such that $d(n!)-1$ is a composite number.

Day 2

1 Let $A A^{\prime}, B B^{\prime}, C C^{\prime}$ be three diameters of the circumcircle of an acute triangle $A B C$. Let P be an arbitrary point in the interior of $\triangle A B C$, and let D, E, F be the orthogonal projection of P on $B C, C A, A B$, respectively. Let X be the point such that D is the midpoint of $A^{\prime} X$, let Y be the point such that E is the midpoint of $B^{\prime} Y$, and similarly let Z be the point such that F is the midpoint of $C^{\prime} Z$. Prove that triangle $X Y Z$ is similar to triangle $A B C$.

2 Let $\left\{b_{n}\right\}_{n \geq 1}^{\infty}$ be a sequence of positive integers. The sequence $\left\{a_{n}\right\}_{n \geq 1}^{\infty}$ is defined as follows: a_{1} is a fixed positive integer and

$$
a_{n+1}=a_{n}^{b_{n}}+1, \quad \forall n \geq 1 .
$$

Find all positive integers $m \geq 3$ with the following property: If the sequence $\left\{a_{n} \bmod m\right\}_{n \geq 1}^{\infty}$ is eventually periodic, then there exist positive integers q, u, v with $2 \leq q \leq m-1$, such that the sequence $\left\{b_{v+u t} \bmod q\right\}_{t \geq 1}^{\infty}$ is purely periodic.

3 Let n be a positive integer. Find the largest real number λ such that for all positive real numbers $x_{1}, x_{2}, \cdots, x_{2 n}$ satisfying the inequality

$$
\frac{1}{2 n} \sum_{i=1}^{2 n}\left(x_{i}+2\right)^{n} \geq \prod_{i=1}^{2 n} x_{i}
$$

the following inequality also holds

$$
\frac{1}{2 n} \sum_{i=1}^{2 n}\left(x_{i}+1\right)^{n} \geq \lambda \prod_{i=1}^{2 n} x_{i}
$$

AoPS Community

- \quad Quiz 3

Day 1

1 Let $n \geq 3$ be an integer. Find the largest real number M such that for any positive real numbers $x_{1}, x_{2}, \cdots, x_{n}$, there exists an arrangement $y_{1}, y_{2}, \cdots, y_{n}$ of real numbers satisfying

$$
\sum_{i=1}^{n} \frac{y_{i}^{2}}{y_{i+1}^{2}-y_{i+1} y_{i+2}+y_{i+2}^{2}} \geq M
$$

where $y_{n+1}=y_{1}, y_{n+2}=y_{2}$.
2 Let $n>1$ be an integer, and let k be the number of distinct prime divisors of n. Prove that there exists an integer $a, 1<a<\frac{n}{k}+1$, such that $n \mid a^{2}-a$.

3 Let G be a simple graph with $3 n^{2}$ vertices ($n \geq 2$). It is known that the degree of each vertex of G is not greater than $4 n$, there exists at least a vertex of degree one, and between any two vertices, there is a path of length ≤ 3. Prove that the minimum number of edges that G might have is equal to $\frac{\left(7 n^{2}-3 n\right)}{2}$.

Day 2

1 Let H be the orthocenter of an acute trangle $A B C$ with circumcircle Γ. Let P be a point on the $\operatorname{arc} B C$ (not containing A) of Γ, and let M be a point on the $\operatorname{arc} C A$ (not containing B) of Γ such that H lies on the segment $P M$. Let K be another point on Γ such that $K M$ is parallel to the Simson line of P with respect to triangle $A B C$. Let Q be another point on Γ such that $P Q \| B C$. Segments $B C$ and $K Q$ intersect at a point J. Prove that $\triangle K J M$ is an isosceles triangle.

2 Let $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ be any permutation of all positive integers. Prove that there exist infinitely many positive integers i such that $\operatorname{gcd}\left(a_{i}, a_{i+1}\right) \leq \frac{3}{4} i$.

3 Let m and n be positive integers. A sequence of points $\left(A_{0}, A_{1}, \ldots, A_{n}\right)$ on the Cartesian plane is called interesting if A_{i} are all lattice points, the slopes of $O A_{0}, O A_{1}, \cdots, O A_{n}$ are strictly increasing (O is the origin) and the area of triangle $O A_{i} A_{i+1}$ is equal to $\frac{1}{2}$ for $i=0,1, \ldots, n-1$. Let ($B_{0}, B_{1}, \cdots, B_{n}$) be a sequence of points. We may insert a point B between B_{i} and B_{i+1} if $\overrightarrow{O B}=\overrightarrow{O B_{i}}+\overrightarrow{O B_{i+1}}$, and the resulting sequence ($B_{0}, B_{1}, \ldots, B_{i}, B, B_{i+1}, \ldots, B_{n}$) is called an extension of the original sequence. Given two interesting sequences ($C_{0}, C_{1}, \ldots, C_{n}$) and ($D_{0}, D_{1}, \ldots, D_{m}$), prove that if $C_{0}=D_{0}$ and $C_{n}=D_{m}$, then we may perform finitely many extensions on each sequence until the resulting two sequences become identical.

