

AoPS Community

2011 China Team Selection Test

China Team Selection Test 2011

www.artofproblemsolving.com/community/c4967 by yunxiu, WakeUp, Amir Hossein

-	Quiz 1
Day 1	
1	In $\triangle ABC$ we have $BC > CA > AB$. The nine point circle is tangent to the incircle, A-excircle, B-excircle and C-excircle at the points T, T_A, T_B, T_C respectively. Prove that the segments TT_B and lines T_AT_C intersect each other.
2	Let <i>S</i> be a set of <i>n</i> points in the plane such that no four points are collinear. Let $\{d_1, d_2, \dots, d_k\}$ be the set of distances between pairs of distinct points in <i>S</i> , and let m_i be the multiplicity of d_i , i.e. the number of unordered pairs $\{P, Q\} \subseteq S$ with $ PQ = d_i$. Prove that $\sum_{i=1}^k m_i^2 \leq n^3 - n^2$.
3	A positive integer n is known as an <i>interesting</i> number if n satisfies
	$\{\frac{n}{10^k}\} > \frac{n}{10^{10}}$
	for all $k = 1, 2, 9$. Find the number of interesting numbers.
Day 2	
1	Let one of the intersection points of two circles with centres O_1, O_2 be P . A common tangent touches the circles at A, B respectively. Let the perpendicular from A to the line BP meet O_1O_2 at C . Prove that $AP \perp PC$.
2	Let n be a positive integer and let α_n be the number of 1's within binary representation of n .
	Show that for all positive integers r ,
	$2^{2n-\alpha_n} \bigg \sum_{k=-n}^n \binom{2n}{n+k} k^{2r}.$
3	For a given integer $n \ge 2$, let a_0, a_1, \ldots, a_n be integers satisfying $0 = a_0 < a_1 < \ldots < a_n = 2n-1$. Find the smallest possible number of elements in the set $\{a_i + a_j \mid 0 \le i \le j \le n\}$.

– Quiz 2

AoPS Community

1	Let $n\geq 2$ be a given integer. Find all functions $f:\mathbb{R} o\mathbb{R}$ such that
	$f(x - f(y)) = f(x + y^n) + f(f(y) + y^n), \qquad \forall x, y \in \mathbb{R}.$
2	Let ℓ be a positive integer, and let m, n be positive integers with $m \ge n$, such that $A_1, A_2, \dots, A_m, A_n$ are $m + n$ pairwise distinct subsets of the set $\{1, 2, \dots, \ell\}$. It is known that $A_i \Delta B_j$ are pairwise distinct, $1 \le i \le m, 1 \le j \le n$, and runs over all nonempty subsets of $\{1, 2, \dots, \ell\}$. Find all possible values of m, n .
3	For any positive integer d , prove there are infinitely many positive integers n such that $d(n!) - 1$ is a composite number.
Day 2	
1	Let AA', BB', CC' be three diameters of the circumcircle of an acute triangle ABC . Let P be an arbitrary point in the interior of $\triangle ABC$, and let D, E, F be the orthogonal projection of P on BC, CA, AB , respectively. Let X be the point such that D is the midpoint of $A'X$, let Y be the point such that E is the midpoint of $B'Y$, and similarly let Z be the point such that F is the midpoint of $C'Z$. Prove that triangle XYZ is similar to triangle ABC .
2	Let $\{b_n\}_{n\geq 1}^{\infty}$ be a sequence of positive integers. The sequence $\{a_n\}_{n\geq 1}^{\infty}$ is defined as follows: a_1 is a fixed positive integer and
	$a_{n+1} = a_n^{b_n} + 1, \qquad \forall n \ge 1.$
	Find all positive integers $m \ge 3$ with the following property: If the sequence $\{a_n \mod m\}_{n\ge 1}^{\infty}$ is eventually periodic, then there exist positive integers q, u, v with $2 \le q \le m - 1$, such that the sequence $\{b_{v+ut} \mod q\}_{t\ge 1}^{\infty}$ is purely periodic.
3	Let <i>n</i> be a positive integer. Find the largest real number λ such that for all positive real numbers x_1, x_2, \dots, x_{2n} satisfying the inequality
	$\frac{1}{2n}\sum_{i=1}^{2n}(x_i+2)^n \ge \prod_{i=1}^{2n}x_i,$
	the following inequality also holds
	$\frac{1}{2n} \sum_{i=1}^{2n} (x_i + 1)^n \ge \lambda \prod_{i=1}^{2n} x_i.$

AoPS Community

– Quiz 3

Day 1

1 Let $n \ge 3$ be an integer. Find the largest real number M such that for any positive real numbers x_1, x_2, \dots, x_n , there exists an arrangement y_1, y_2, \dots, y_n of real numbers satisfying

$$\sum_{i=1}^{n} \frac{y_i^2}{y_{i+1}^2 - y_{i+1}y_{i+2} + y_{i+2}^2} \ge M$$

where $y_{n+1} = y_1, y_{n+2} = y_2$.

- **2** Let n > 1 be an integer, and let k be the number of distinct prime divisors of n. Prove that there exists an integer a, $1 < a < \frac{n}{k} + 1$, such that $n \mid a^2 a$.
- **3** Let *G* be a simple graph with $3n^2$ vertices $(n \ge 2)$. It is known that the degree of each vertex of *G* is not greater than 4n, there exists at least a vertex of degree one, and between any two vertices, there is a path of length ≤ 3 . Prove that the minimum number of edges that *G* might have is equal to $\frac{(7n^2-3n)}{2}$.

Day 2

- 1 Let H be the orthocenter of an acute trangle ABC with circumcircle Γ . Let P be a point on the arc BC (not containing A) of Γ , and let M be a point on the arc CA (not containing B) of Γ such that H lies on the segment PM. Let K be another point on Γ such that KM is parallel to the Simson line of P with respect to triangle ABC. Let Q be another point on Γ such that $PQ \parallel BC$. Segments BC and KQ intersect at a point J. Prove that ΔKJM is an isosceles triangle.
- **2** Let $a_1, a_2, \ldots, a_n, \ldots$ be any permutation of all positive integers. Prove that there exist infinitely many positive integers *i* such that $gcd(a_i, a_{i+1}) \leq \frac{3}{4}i$.

3 Let *m* and *n* be positive integers. A sequence of points (A_0, A_1, \ldots, A_n) on the Cartesian plane is called *interesting* if A_i are all lattice points, the slopes of OA_0, OA_1, \cdots, OA_n are strictly increasing (*O* is the origin) and the area of triangle OA_iA_{i+1} is equal to $\frac{1}{2}$ for $i = 0, 1, \ldots, n-1$. Let (B_0, B_1, \cdots, B_n) be a sequence of points. We may insert a point *B* between B_i and B_{i+1} if $\overrightarrow{OB} = \overrightarrow{OB_i} + \overrightarrow{OB_{i+1}}$, and the resulting sequence $(B_0, B_1, \ldots, B_i, B, B_{i+1}, \ldots, B_n)$ is called an *extension* of the original sequence. Given two *interesting* sequences (C_0, C_1, \ldots, C_n) and (D_0, D_1, \ldots, D_m) , prove that if $C_0 = D_0$ and $C_n = D_m$, then we may perform finitely many *extensions* on each sequence until the resulting two sequences become identical.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱