AoPS Community

China Team Selection Test 2013
www.artofproblemsolving.com/community/c4969
by Uagu, s372102, sqing, iarnab_kundu

Day 1 March 13th

1 The quadrilateral $A B C D$ is inscribed in circle $\omega . F$ is the intersection point of $A C$ and $B D . B A$ and $C D$ meet at E. Let the projection of F on $A B$ and $C D$ be G and H, respectively. Let M and N be the midpoints of $B C$ and $E F$, respectively. If the circumcircle of $\triangle M N G$ only meets segment $B F$ at P, and the circumcircle of $\triangle M N H$ only meets segment $C F$ at Q, prove that $P Q$ is parallel to $B C$.

2 For the positive integer n, define $f(n)=\min _{m \in \mathbb{Z}}\left|\sqrt{2}-\frac{m}{n}\right|$. Let $\left\{n_{i}\right\}$ be a strictly increasing sequence of positive integers. C is a constant such that $f\left(n_{i}\right)<\frac{C}{n_{i}^{2}}$ for all $i \in\{1,2, \ldots\}$. Show that there exists a real number $q>1$ such that $n_{i} \geqslant q^{i-1}$ for all $i \in\{1,2, \ldots\}$.

3 There are n balls numbered $1,2, \cdots, n$, respectively. They are painted with 4 colours, red, yellow, blue, and green, according to the following rules:
First, randomly line them on a circle.
Then let any three clockwise consecutive balls numbered i, j, k, in order.

1) If $i>j>k$, then the ball j is painted in red;
2) If $i<j<k$, then the ball j is painted in yellow;
3) If $i<j, k<j$, then the ball j is painted in blue;
4) If $i>j, k>j$, then the ball j is painted in green.

And now each permutation of the balls determine a painting method.
We call two painting methods distinct, if there exists a ball, which is painted with two different colours in that two methods.
Find out the number of all distinct painting methods.

Day 2 March 14th

1 Let n and k be two integers which are greater than 1 . Let $a_{1}, a_{2}, \ldots, a_{n}, c_{1}, c_{2}, \ldots, c_{m}$ be nonnegative real numbers such that
i) $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$ and $a_{1}+a_{2}+\ldots+a_{n}=1$;
ii) For any integer $m \in\{1,2, \ldots, n\}$, we have that $c_{1}+c_{2}+\ldots+c_{m} \leq m^{k}$.

Find the maximum of $c_{1} a_{1}^{k}+c_{2} a_{2}^{k}+\ldots+c_{n} a_{n}^{k}$.
2 Let P be a given point inside the triangle $A B C$. Suppose L, M, N are the midpoints of $B C, C A, A B$

AoPS Community

respectively and

$$
P L: P M: P N=B C: C A: A B .
$$

The extensions of $A P, B P, C P$ meet the circumcircle of $A B C$ at D, E, F respectively. Prove that the circumcentres of $A P F, A P E, B P F, B P D, C P D, C P E$ are concyclic.

3 Find all positive real numbers $r<1$ such that there exists a set \mathcal{S} with the given properties:
i) For any real number t, exactly one of $t, t+r$ and $t+1$ belongs to \mathcal{S};
ii) For any real number t, exactly one of $t, t-r$ and $t-1$ belongs to \mathcal{S}.

Day 3 March 18th

1 For a positive integer $k \geq 2$ define $\mathcal{T}_{k}=\{(x, y) \mid x, y=0,1, \ldots, k-1\}$ to be a collection of k^{2} lattice points on the cartesian coordinate plane. Let $d_{1}(k)>d_{2}(k)>\cdots$ be the decreasing sequence of the distinct distances between any two points in T_{k}. Suppose $S_{i}(k)$ be the number of distances equal to $d_{i}(k)$.
Prove that for any three positive integers $m>n>i$ we have $S_{i}(m)=S_{i}(n)$.
2 Prove that: there exists a positive constant K, and an integer series $\left\{a_{n}\right\}$, satisfying: (1) $0<$ $a_{1}<a_{2}<\cdots<a_{n}<\cdots$; (2) For any positive integer $n, a_{n}<1.01^{n} K$; (3) For any finite number of distinct terms in $\left\{a_{n}\right\}$, their sum is not a perfect square.

3 Let A be a set consisting of 6 points in the plane. denoted $n(A)$ as the number of the unit circles which meet at least three points of A. Find the maximum of $n(A)$

Day 4 March 19th

1 For a positive integer $N>1$ with unique factorization $N=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, we define

$$
\Omega(N)=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k} .
$$

Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers and $p(x)=\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)$ such that for all positive integers $k, \Omega(P(k))$ is even. Show that n is an even number.

2 Find the greatest positive integer m with the following property:
For every permutation $a_{1}, a_{2}, \cdots, a_{n}, \cdots$ of the set of positive integers, there exists positive integers $i_{1}<i_{2}<\cdots<i_{m}$ such that $a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{m}}$ is an arithmetic progression with an odd common difference.

3 Let $n>1$ be an integer and let $a_{0}, a_{1}, \ldots, a_{n}$ be non-negative real numbers. Definite $S_{k}=$ $\sum_{i=0}^{k}\binom{k}{i} a_{i}$ for $k=0,1, \ldots, n$. Prove that

$$
\frac{1}{n} \sum_{k=0}^{n-1} S_{k}^{2}-\frac{1}{n^{2}}\left(\sum_{k=0}^{n} S_{k}\right)^{2} \leq \frac{4}{45}\left(S_{n}-S_{0}\right)^{2} .
$$

2013 China Team Selection Test

Day 5 March 24th

1 Let $n \geq 2$ be an integer. $a_{1}, a_{2}, \ldots, a_{n}$ are arbitrarily chosen positive integers with $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ 1. Let $A=a_{1}+a_{2}+\cdots+a_{n}$ and $\left(A, a_{i}\right)=d_{i}$. Let $\left(a_{2}, a_{3}, \ldots, a_{n}\right)=D_{1},\left(a_{1}, a_{3}, \ldots, a_{n}\right)=$ $D_{2}, \ldots,\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=D_{n}$.
Find the minimum of $\prod_{i=1}^{n} \frac{A-a_{i}}{d_{i} D_{i}}$
2 The circumcircle of triangle $A B C$ has centre O. P is the midpoint of $\widehat{B A C}$ and $Q P$ is the diameter. Let I be the incentre of $\triangle A B C$ and let D be the intersection of $P I$ and $B C$. The circumcircle of $\triangle A I D$ and the extension of $P A$ meet at F. The point E lies on the line segment $P D$ such that $D E=D Q$. Let R, r be the radius of the inscribed circle and circumcircle of $\triangle A B C$, respectively.
Show that if $\angle A E F=\angle A P E$, then $\sin ^{2} \angle B A C=\frac{2 r}{R}$
3101 people, sitting at a round table in any order, had $1,2, \ldots, 101$ cards, respectively.
A transfer is someone give one card to one of the two people adjacent to him.
Find the smallest positive integer k such that there always can through no more than k times transfer, each person hold cards of the same number, regardless of the sitting order.

Day 6 March 25th
1 Let p be a prime number and a, k be positive integers such that $p^{a}<k<2 p^{a}$. Prove that there exists a positive integer n such that

$$
n<p^{2 a}, C_{n}^{k} \equiv n \equiv k \quad\left(\bmod p^{a}\right) .
$$

2 Let $k \geq 2$ be an integer and let $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n}$ be non-negative real numbers. Prove that

$$
\left(\frac{n}{n-1}\right)^{n-1}\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}\right)+\left(\frac{1}{n} \sum_{i=1}^{n} b_{i}\right)^{2} \geq \prod_{i=1}^{n}\left(a_{i}^{2}+b_{i}^{2}\right)^{\frac{1}{n}}
$$

3 A point (x, y) is a lattice point if $x, y \in \mathbb{Z}$. Let $E=\{(x, y): x, y \in \mathbb{Z}\}$. In the coordinate plane, P and Q are both sets of points in and on the boundary of a convex polygon with vertices on lattice points. Let $T=P \cap Q$. Prove that if $T \neq \emptyset$ and $T \cap E=\emptyset$, then T is a non-degenerate convex quadrilateral region.

