AoPS Community

China Team Selection Test 2014
www.artofproblemsolving.com/community/c4970
by 61 plus, sqing

- TST 1

Day 1 March 12th
$1 A B C D$ is a cyclic quadrilateral, with diagonals $A C, B D$ perpendicular to each other. Let point F be on side $B C$, the parallel line $E F$ to $A C$ intersect $A B$ at point E, line $F G$ parallel to $B D$ intersect $C D$ at G. Let the projection of E onto $C D$ be P, projection of F onto $D A$ be Q, projection of G onto $A B$ be R. Prove that $Q F$ bisects $\angle P Q R$.

2 Let A be a finite set of positive numbers, $B=\left\{\left.\frac{a+b}{c+d} \right\rvert\, a, b, c, d \in A\right\}$.
Show that: $|B| \geq 2|A|^{2}-1$, where $|X|$ be the number of elements of the finite set X. (High School Affiliated to Nanjing Normal University)

3 Let the function $f: N^{*} \rightarrow N^{*}$ such that
(1) $(f(m), f(n)) \leq(m, n)^{2014}, \forall m, n \in N^{*}$;
(2) $n \leq f(n) \leq n+2014, \forall n \in N^{*}$

Show that: there exists the positive integers N such that $f(n)=n$, for each integer $n \geq N$.
(High School Affiliated to Nanjing Normal University)
Day 2 March 13th
4 For any real numbers sequence $\left\{x_{n}\right\}$, suppose that $\left\{y_{n}\right\}$ is a sequence such that: $y_{1}=x_{1}, y_{n+1}=$ $x_{n+1}-\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}(n \geq 1)$.
Find the smallest positive number λ such that for any real numbers sequence $\left\{x_{n}\right\}$ and all positive integers m, have $\frac{1}{m} \sum_{i=1}^{m} x_{i}^{2} \leq \sum_{i=1}^{m} \lambda^{m-i} y_{i}^{2}$.
(High School Affiliated to Nanjing Normal University)
5 Let $a_{1}<a_{2}<\ldots<a_{t}$ be t given positive integers where no three form an arithmetic progression. For $k=t, t+1, \ldots$ define a_{k+1} to be the smallest positive integer larger than a_{k} satisfying the condition that no three of $a_{1}, a_{2}, \ldots, a_{k+1}$ form an arithmetic progression. For any $x \in \mathbb{R}^{+}$ define $A(x)$ to be the number of terms in $\left\{a_{i}\right\}_{i \geq 1}$ that are at most x. Show that there exist $c>1$ and $K>0$ such that $A(x) \geq c \sqrt{x}$ for any $x>K$.

6 Let $n \geq 2$ be a positive integer. Fill up a $n \times n$ table with the numbers $1,2, \ldots, n^{2}$ exactly once
each. Two cells are termed adjacent if they have a common edge. It is known that for any two adjacent cells, the numbers they contain differ by at most n. Show that there exist a 2×2 square of adjacent cells such that the diagonally opposite pairs sum to the same number.

- TST 2

Day 1 March 17th

1 Prove that for any positive integers k and N,

$$
\left(\frac{1}{N} \sum_{n=1}^{N}(\omega(n))^{k}\right)^{\frac{1}{k}} \leq k+\sum_{q \leq N} \frac{1}{q}
$$

where $\sum_{q \leq N} \frac{1}{q}$ is the summation over of prime powers $q \leq N$ (including $q=1$).
Note: For integer $n>1, \omega(n)$ denotes number of distinct prime factors of n, and $\omega(1)=0$.
2 Given a fixed positive integer $a \geq 9$. Prove: There exist finitely many positive integers n, satisfying:
(1) $\tau(n)=a$
(2) $n \mid \phi(n)+\sigma(n)$

Note: For positive integer $n, \tau(n)$ is the number of positive divisors of $n, \phi(n)$ is the number of positive integers $\leq n$ and relatively prime with $n, \sigma(n)$ is the sum of positive divisors of n.
$3 \quad A$ is the set of points of a convex n-gon on a plane. The distinct pairwise distances between any 2 points in A arranged in descending order is $d_{1}>d_{2}>\ldots>d_{m}>0$. Let the number of unordered pairs of points in A such that their distance is d_{i} be exactly μ_{i}, for $i=1,2, \ldots, m$. Prove: For any positive integer $k \leq m, \mu_{1}+\mu_{2}+\ldots+\mu_{k} \leq(3 k-1) n$.

Day 2 March 18th
4 Given circle O with radius R, the inscribed triangle $A B C$ is an acute scalene triangle, where $A B$ is the largest side. $A H_{A}, B H_{B}, C H_{C}$ are heights on $B C, C A, A B$. Let D be the symmetric point of H_{A} with respect to $H_{B} H_{C}, E$ be the symmetric point of H_{B} with respect to $H_{A} H_{C}$. P is the intersection of $A D, B E, H$ is the orthocentre of $\triangle A B C$. Prove: $O P \cdot O H$ is fixed, and find this value in terms of R.
(Edited)
$5 \quad$ Find the smallest positive constant c satisfying: For any simple graph $G=G(V, E)$, if $|E| \geq$ $c|V|$, then G contains 2 cycles with no common vertex, and one of them contains a chord.
Note: The cycle of graph $G(V, E)$ is a set of distinct vertices $v_{1}, v_{2} \ldots, v_{n} \subseteq V, v_{i} v_{i+1} \in E$ for all $1 \leq i \leq n\left(n \geq 3, v_{n+1}=v_{1}\right)$; a cycle containing a chord is the cycle $v_{1}, v_{2} \ldots, v_{n}$, such that there

AoPS Community

exist $i, j, 1<i-j<n-1$, satisfying $v_{i} v_{j} \in E$.
6 Let k be a fixed even positive integer, N is the product of k distinct primes $p_{1}, \ldots, p_{k}, a, b$ are two positive integers, $a, b \leq N$. Denote $S_{1}=\{d|d| N, a \leq d \leq b, d$ has even number of prime factors $\}, S_{2}=\{d|d| N, a \leq d \leq b, d$ has odd number of prime factors $\}$,
Prove: $\left|S_{1}\right|-\left|S_{2}\right| \leq C_{k}^{\frac{k}{2}}$

- TST3

Day 1 March 23rd
1 Let the circumcenter of triangle $A B C$ be $O . H_{A}$ is the projection of A onto $B C$. The extension of $A O$ intersects the circumcircle of $B O C$ at A^{\prime}. The projections of A^{\prime} onto $A B, A C$ are D, E, and O_{A} is the circumcentre of triangle $D H_{A} E$. Define $H_{B}, O_{B}, H_{C}, O_{C}$ similarly.
Prove: $H_{A} O_{A}, H_{B} O_{B}, H_{C} O_{C}$ are concurrent
2 Let $A_{1} A_{2} \ldots A_{101}$ be a regular 101-gon, and colour every vertex red or blue. Let N be the number of obtuse triangles satisfying the following: The three vertices of the triangle must be vertices of the 101-gon, both the vertices with acute angles have the same colour, and the vertex with obtuse angle have different colour. (1) Find the largest possible value of N. (2) Find the number of ways to colour the vertices such that maximum N is acheived. (Two colourings a different if for some A_{i} the colours are different on the two colouring schemes).

3 Show that there are no 2-tuples (x, y) of positive integers satisfying the equation $(x+1)(x+$ 2) $\cdots(x+2014)=(y+1)(y+2) \cdots(y+4028)$.

Day 2 March 24th

$4 \quad$ Let k be a fixed odd integer, $k>3$. Prove: There exist infinitely many positive integers n, such that there are two positive integers d_{1}, d_{2} satisfying d_{1}, d_{2} each dividing $\frac{n^{2}+1}{2}$, and $d_{1}+d_{2}=$ $n+k$.

5 Let n be a given integer which is greater than 1 . Find the greatest constant $\lambda(n)$ such that for any non-zero complex $z_{1}, z_{2}, \cdots, z_{n}$, have that

$$
\sum_{k=1}^{n}\left|z_{k}\right|^{2} \geq \lambda(n) \min _{1 \leq k \leq n}\left\{\left|z_{k+1}-z_{k}\right|^{2}\right\}
$$

where $z_{n+1}=z_{1}$.
6 For positive integer $k>1$, let $f(k)$ be the number of ways of factoring k into product of positive integers greater than 1 (The order of factors are not countered, for example $f(12)=4$, as 12
can be factored in these 4 ways: $12,2 \cdot 6,3 \cdot 4,2 \cdot 2 \cdot 3$.
Prove: If n is a positive integer greater than $1, p$ is a prime factor of n, then $f(n) \leq \frac{n}{p}$

