

AoPS Community

2001 India IMO Training Camp

India International Mathematical Olympiad Training Camp 2001

www.artofproblemsolving.com/community/c4996

by ComplexPhi, Agr_94_Math, Omid Hatami

Day 1	
1	Let x, y, $z > 0$. Prove that if $xyz \ge xy + yz + zx$, then $xyz \ge 3(x + y + z)$.
2	Two symbols A and B obey the rule $ABBB = B$. Given a word $x_1x_2x_{3n+1}$ consisting of n letters A and $2n + 1$ letters B, show that there is a unique cyclic permutation of this word which reduces to B .
3	In a triangle ABC with incircle ω and incenter I , the segments AI , BI , CI cut ω at D , E , F , respectively. Rays AI , BI , CI meet the sides BC , CA , AB at L , M , N respectively. Prove that:
	$AL + BM + CN \le 3(AD + BE + CF)$
	When does equality occur?
Day 2	
1	For any positive integer <i>n</i> , show that there exists a polynomial $P(x)$ of degree <i>n</i> with integer coefficients such that $P(0), P(1), \ldots, P(n)$ are all distinct powers of 2.
2	Let $Q(x)$ be a cubic polynomial with integer coefficients. Suppose that a prime p divides $Q(x_j)$ for $j = 1$, 2, 3, 4, where x_1, x_2, x_3, x_4 are distinct integers from the set $\{0, 1, \dots, p-1\}$. Prove that p divides all the coefficients of $Q(x)$.
3	Find the number of all unordered pairs $\{A, B\}$ of subsets of an 8-element set, such that $A \cap B \neq \emptyset$ and $ A \neq B $.
Day 3	
1	If on $\triangle ABC$, trinagles AEB and AFC are constructed externally such that $\angle AEB = 2\alpha$, $\angle AFB = 2\beta$. $AE = EB$, $AF = FC$. COnstructed externally on BC is triangle BDC with $\angle DBC = \beta$, $\angle BCD = \alpha$. Prove that 1. DA is perpendicular to EF . 2. If T is the projection of D on BC , then prove that $\frac{DA}{EF} = 2\frac{DT}{BC}$.
2	Find all functions $f \colon \mathbb{R}_+ \to \mathbb{R}_+$ satisfying :
	f(f(x) - x) = 2x

AoPS Community

2001 India IMO Training Camp

for all x > 0.

3 Points $B = B_1, B_2, \dots, B_n, B_{n+1} = C$ are chosen on side BC of a triangle ABC in that order. Let r_j be the inradius of triangle AB_jB_{j+1} for $j = 1, \dots, n$, and r be the inradius of $\triangle ABC$. Show that there is a constant λ independent of n such that :

$$(\lambda - r_1)(\lambda - r_2) \cdots (\lambda - r_n) = \lambda^{n-1}(\lambda - r)$$

Day 4

1 Complex numbers α , β , γ have the property that $\alpha^k + \beta^k + \gamma^k$ is an integer for every natural number *k*. Prove that the polynomial

$$(x-lpha)(x-eta)(x-\gamma)$$

has integer coefficients.

2 Let p > 3 be a prime. For each $k \in \{1, 2, ..., p - 1\}$, define x_k to be the unique integer in $\{1, ..., p - 1\}$ such that $kx_k \equiv 1 \pmod{p}$ and set $kx_k = 1 + pn_k$. Prove that :

$$\sum_{k=1}^{p-1} kn_k \equiv \frac{p-1}{2} \pmod{p}$$

3 Each vertex of an $m \times n$ grid is colored blue, green or red in such a way that all the boundary vertices are red. We say that a unit square of the grid is properly colored if: (*i*) all the three colors occur at the vertices of the square, and (*ii*) one side of the square has the endpoints of the same color.

Show that the number of properly colored squares is even.

Day 5

Let *ABCD* be a rectangle, and let ω be a circular arc passing through the points A and C. Let ω₁ be the circle tangent to the lines *CD* and *DA* and to the circle ω, and lying completely inside the rectangle *ABCD*. Similiarly let ω₂ be the circle tangent to the lines *AB* and *BC* and to the circle ω, and lying completely inside the rectangle *ABCD*. Denote by r₁ and r₂ the radii of the circles ω₁ and ω₂, respectively, and by r the inradius of triangle *ABC*.
(a) Prove that r₁ + r₂ = 2r.

(b) Prove that one of the two common internal tangents of the two circles ω_1 and ω_2 is parallel to the line AC and has the length |AB - AC|.

AoPS Community

2001 India IMO Training Camp

- **2** A strictly increasing sequence (a_n) has the property that $gcd(a_m, a_n) = a_{gcd(m,n)}$ for all $m, n \in \mathbb{N}$. Suppose k is the least positive integer for which there exist positive integers r < k < s such that $a_k^2 = a_r a_s$. Prove that r | k and k | s.
- **3** Let P(x) be a polynomial of degree n with real coefficients and let $a \ge 3$. Prove that

$$\max_{0 \le j \le n+1} \left| a^j - P(j) \right| \ge 1$$

Act of Problem Solving is an ACS WASC Accredited School.