Art of Problem Solving

AoPS Community

India International Mathematical Olympiad Training Camp 2001

www.artofproblemsolving.com/community/c4996
by ComplexPhi, Agr_94_Math, Omid Hatami

Day 1

1 Let $x, y, z>0$. Prove that if $x y z \geq x y+y z+z x$, then $x y z \geq 3(x+y+z)$.
2 Two symbols A and B obey the rule $A B B B=B$. Given a word $x_{1} x_{2} \ldots x_{3 n+1}$ consisting of n letters A and $2 n+1$ letters B, show that there is a unique cyclic permutation of this word which reduces to B.

3 In a triangle $A B C$ with incircle ω and incenter I, the segments $A I, B I, C I$ cut ω at D, E, F , respectively. Rays $A I, B I, C I$ meet the sides $B C, C A, A B$ at L, M, N respectively. Prove that:

$$
A L+B M+C N \leq 3(A D+B E+C F)
$$

When does equality occur?

Day 2

1 For any positive integer n, show that there exists a polynomial $P(x)$ of degree n with integer coefficients such that $P(0), P(1), \ldots, P(n)$ are all distinct powers of 2 .

2 Let $Q(x)$ be a cubic polynomial with integer coefficients. Suppose that a prime p divides $Q\left(x_{j}\right)$ for $j=1,2,3,4$, where $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct integers from the set $\{0,1, \cdots, p-1\}$. Prove that p divides all the coefficients of $Q(x)$.

3 Find the number of all unordered pairs $\{A, B\}$ of subsets of an 8 -element set, such that $A \cap B \neq$ \emptyset and $|A| \neq|B|$.

Day 3

1 If on $\triangle A B C$, trinagles $A E B$ and $A F C$ are constructed externally such that $\angle A E B=2 \alpha$, $\angle A F B=2 \beta . A E=E B, A F=F C$.
COnstructed externally on $B C$ is triangle $B D C$ with $\angle D B C=\beta, \angle B C D=\alpha$.
Prove that 1. $D A$ is perpendicular to $E F$.
2. If T is the projection of D on $B C$, then prove that $\frac{D A}{E F}=2 \frac{D T}{B C}$.

2 Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying:

$$
f(f(x)-x)=2 x
$$

for all $x>0$.
3 Points $B=B_{1}, B_{2}, \cdots, B_{n}, B_{n+1}=C$ are chosen on side $B C$ of a triangle $A B C$ in that order. Let r_{j} be the inradius of triangle $A B_{j} B_{j+1}$ for $j=1, \cdots, n$, and r be the inradius of $\triangle A B C$. Show that there is a constant λ independent of n such that :

$$
\left(\lambda-r_{1}\right)\left(\lambda-r_{2}\right) \cdots\left(\lambda-r_{n}\right)=\lambda^{n-1}(\lambda-r)
$$

Day 4

1 Complex numbers α, β, γ have the property that $\alpha^{k}+\beta^{k}+\gamma^{k}$ is an integer for every natural number k. Prove that the polynomial

$$
(x-\alpha)(x-\beta)(x-\gamma)
$$

has integer coefficients.
2 Let $p>3$ be a prime. For each $k \in\{1,2, \ldots, p-1\}$, define x_{k} to be the unique integer in $\{1, \ldots, p-1\}$ such that $k x_{k} \equiv 1(\bmod p)$ and set $k x_{k}=1+p n_{k}$. Prove that:

$$
\sum_{k=1}^{p-1} k n_{k} \equiv \frac{p-1}{2} \quad(\bmod p)
$$

3 Each vertex of an $m \times n$ grid is colored blue, green or red in such a way that all the boundary vertices are red. We say that a unit square of the grid is properly colored if: (i) all the three colors occur at the vertices of the square, and (ii) one side of the square has the endpoints of the same color.
Show that the number of properly colored squares is even.

Day 5

1 Let $A B C D$ be a rectangle, and let ω be a circular arc passing through the points A and C.
Let ω_{1} be the circle tangent to the lines $C D$ and $D A$ and to the circle ω, and lying completely inside the rectangle $A B C D$.
Similiarly let ω_{2} be the circle tangent to the lines $A B$ and $B C$ and to the circle ω, and lying completely inside the rectangle $A B C D$.
Denote by r_{1} and r_{2} the radii of the circles ω_{1} and ω_{2}, respectively, and by r the inradius of triangle $A B C$.
(a) Prove that $r_{1}+r_{2}=2 r$.
(b) Prove that one of the two common internal tangents of the two circles ω_{1} and ω_{2} is parallel to the line $A C$ and has the length $|A B-A C|$.

2 A strictly increasing sequence $\left(a_{n}\right)$ has the property that $\operatorname{gcd}\left(a_{m}, a_{n}\right)=a_{\operatorname{gcd}(m, n)}$ for all $m, n \in$ \mathbb{N}. Suppose k is the least positive integer for which there exist positive integers $r<k<s$ such that $a_{k}^{2}=a_{r} a_{s}$. Prove that $r \mid k$ and $k \mid s$.

3 Let $P(x)$ be a polynomial of degree n with real coefficients and let $a \geq 3$. Prove that

$$
\max _{0 \leq j \leq n+1}\left|a^{j}-P(j)\right| \geq 1
$$

