Art of Problem Solving

AoPS Community

India International Mathematical Olympiad Training Camp 2002

www.artofproblemsolving.com/community/c4997
by Sayan, orl, Valentin Vornicu, darij grinberg

1 Let A, B and C be three points on a line with B between A and C. Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ be semicircles, all on the same side of $A C$ and with $A C, A B, B C$ as diameters, respectively. Let l be the line perpendicular to $A C$ through B. Let Γ be the circle which is tangent to the line l, tangent to Γ_{1} internally, and tangent to Γ_{3} externally. Let D be the point of contact of Γ and Γ_{3}. The diameter of Γ through D meets l in E. Show that $A B=D E$.

2 Show that there is a set of 2002 consecutive positive integers containing exactly 150 primes. (You may use the fact that there are 168 primes less than 1000)

3 Let $X=\left\{2^{m} 3^{n} \mid 0 \leq m, n \leq 9\right\}$. How many quadratics are there of the form $a x^{2}+2 b x+c$, with equal roots, and such that a, b, c are distinct elements of X ?

4 Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$. Show that there exist points D, E, and F on sides $B C, C A$, and $A B$ respectively such that

$$
O D+D H=O E+E H=O F+F H
$$

and the lines $A D, B E$, and $C F$ are concurrent.
5 Let a, b, c be positive reals such that $a^{2}+b^{2}+c^{2}=3 a b c$. Prove that

$$
\frac{a}{b^{2} c^{2}}+\frac{b}{c^{2} a^{2}}+\frac{c}{a^{2} b^{2}} \geq \frac{9}{a+b+c}
$$

6 Determine the number of n-tuples of integers $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that $\left|x_{i}\right| \leq 10$ for each $1 \leq i \leq n$ and $\left|x_{i}-x_{j}\right| \leq 10$ for $1 \leq i, j \leq n$.

7 Given two distinct circles touching each other internally, show how to construct a triangle with the inner circle as its incircle and the outer circle as its nine point circle.

8 Let $\sigma(n)=\sum_{d \mid n} d$, the sum of positive divisors of an integer $n>0$.
(a) Show that $\sigma(m n)=\sigma(m) \sigma(n)$ for positive integers m and n with $\operatorname{gcd}(m, n)=1$
(b) Find all positive integers n such that $\sigma(n)$ is a power of 2 .

9 On each day of their tour of the West Indies, Sourav and Srinath have either an apple or an orange for breakfast. Sourav has oranges for the first m days, apples for the next m days,

2002 India IMO Training Camp

followed by oranges for the next m days, and so on. Srinath has oranges for the first n days, apples for the next n days, followed by oranges for the next n days, and so on.
If $\operatorname{gcd}(m, n)=1$, and if the tour lasted for $m n$ days, on how many days did they eat the same kind of fruit?

10 Let T denote the set of all ordered triples (p, q, r) of nonnegative integers. Find all functions $f: T \rightarrow \mathbb{R}$ satisfying

$$
f(p, q, r)= \begin{cases}0 & \text { if } p q r=0 \\ 1+\frac{1}{6}(f(p+1, q-1, r)+f(p-1, q+1, r) & \\ +f(p-1, q, r+1)+f(p+1, q, r-1) & \\ +f(p, q+1, r-1)+f(p, q-1, r+1)) & \text { otherwise }\end{cases}
$$

for all nonnegative integers p, q, r.
11 Let $A B C$ be a triangle and P an exterior point in the plane of the triangle. Suppose the lines $A P$, $B P, C P$ meet the sides $B C, C A, A B$ (or extensions thereof) in D, E, F, respectively. Suppose further that the areas of triangles $P B D, P C E, P A F$ are all equal. Prove that each of these areas is equal to the area of triangle $A B C$ itself.

12 Let a, b be integers with $0<a<b$. A set $\{x, y, z\}$ of non-negative integers is olympic if $x<y<z$ and if $\{z-y, y-x\}=\{a, b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.

13 Let $A B C$ and $P Q R$ be two triangles such that
(a) P is the mid-point of $B C$ and A is the midpoint of $Q R$.
(b) $Q R$ bisects $\angle B A C$ and $B C$ bisects $\angle Q P R$

Prove that $A B+A C=P Q+P R$.
14 Let p be an odd prime and let a be an integer not divisible by p. Show that there are $p^{2}+1$ triples of integers (x, y, z) with $0 \leq x, y, z<p$ and such that $(x+y+z)^{2} \equiv a x y z(\bmod p)$

15 Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbitrary real numbers. Prove the inequality

$$
\frac{x_{1}}{1+x_{1}^{2}}+\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}+\cdots+\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<\sqrt{n} .
$$

16 Is it possible to find 100 positive integers not exceeding 25,000 , such that all pairwise sums of them are different?

17 Let n be a positive integer and let $(1+i T)^{n}=f(T)+i g(T)$ where i is the square root of -1 , and f and g are polynomials with real coefficients. Show that for any real number k the equation $f(T)+k g(T)=0$ has only real roots.

18 Consider the square grid with $A=(0,0)$ and $C=(n, n)$ at its diagonal ends. Paths from A to C are composed of moves one unit to the right or one unit up. Let C_{n} (n-th catalan number) be the number of paths from A to C which stay on or below the diagonal $A C$. Show that the number of paths from A to C which cross $A C$ from below at most twice is equal to $C_{n+2}-2 C_{n+1}+C_{n}$

19 Let $A B C$ be an acute triangle. Let $D A C, E A B$, and $F B C$ be isosceles triangles exterior to $A B C$, with $D A=D C, E A=E B$, and $F B=F C$, such that

$$
\angle A D C=2 \angle B A C, \quad \angle B E A=2 \angle A B C, \quad \angle C F B=2 \angle A C B .
$$

Let D^{\prime} be the intersection of lines $D B$ and $E F$, let E^{\prime} be the intersection of $E C$ and $D F$, and let F^{\prime} be the intersection of $F A$ and $D E$. Find, with proof, the value of the sum

$$
\frac{D B}{D D^{\prime}}+\frac{E C}{E E^{\prime}}+\frac{F A}{F F^{\prime}}
$$

20 Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{b+c}{b+a}
$$

21 Given a prime p, show that there exists a positive integer n such that the decimal representation of p^{n} has a block of 2002 consecutive zeros.

