Art of Problem Solving

AoPS Community

India International Mathematical Olympiad Training Camp 2004

www.artofproblemsolving.com/community/c4999
by iandrei, sebadollahi, MithsApprentice, manlio, Armo, Rushil, vinoth_90_2004, grobber, lotharek, vess, darij grinberg, Myth

- Practice Tests

Day 1

1 Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.

2 Prove that for every positive integer n there exists an n-digit number divisible by 5^{n} all of whose digits are odd.

3 For a, b, c positive reals find the minimum value of

$$
\frac{a^{2}+b^{2}}{c^{2}+a b}+\frac{b^{2}+c^{2}}{a^{2}+b c}+\frac{c^{2}+a^{2}}{b^{2}+c a} .
$$

4 Given a permutation $\sigma=\left(a_{1}, a_{2}, a_{3}, \ldots a_{n}\right)$ of $(1,2,3, \ldots n)$, an ordered pair $\left(a_{j}, a_{k}\right)$ is called an inversion of σ if $a \leq j<k \leq n$ and $a_{j}>a_{k}$. Let $m(\sigma)$ denote the no. of inversions of the permutation σ. Find the average of $m(\sigma)$ as σ varies over all permutations.

Day 2

1 Prove that in any triangle $A B C$,

$$
0<\cot \left(\frac{A}{4}\right)-\tan \left(\frac{B}{4}\right)-\tan \left(\frac{C}{4}\right)-1<2 \cot \left(\frac{A}{2}\right) .
$$

2 Find all triples (x, y, n) of positive integers such that

$$
(x+y)(1+x y)=2^{n}
$$

3 Suppose the polynomial $P(x) \equiv x^{3}+a x^{2}+b x+c$ has only real zeroes and let $Q(x) \equiv 5 x^{2}-$ $16 x+2004$. Assume that $P(Q(x))=0$ has no real roots. Prove that $P(2004)>2004$

4 Let f be a bijection of the set of all natural numbers on to itself. Prove that there exists positive integers $a<a+d<a+2 d$ such that $f(a)<f(a+d)<f(a+2 d)$

- \quad Selection Tests

Day 1

1 A set $A_{1}, A_{2}, A_{3}, A_{4}$ of 4 points in the plane is said to be Athenian set if there is a point P of the plane satsifying
${ }^{*}$) P does not lie on any of the lines $A_{i} A_{j}$ for $1 \leq i<j \leq 4$;
(**) the line joining P to the mid-point of the line $A_{i} A_{j}$ is perpendicular to the line joining P to the mid-point of $A_{k} A_{l}, i, j, k, l$ being distinct.
(a) Find all Athenian sets in the plane.
(b) For a given Athenian set, find the set of all points P in the plane satisfying (*) and (**)

2 Determine all integers a such that $a^{k}+1$ is divisible by 12321 for some k
3 The game of pebbles is played on an infinite board of lattice points (i, j). Initially there is a pebble at $(0,0)$. A move consists of removing a pebble from point (i, j) and placing a pebble at each of the points $(i+1, j)$ and $(i, j+1)$ provided both are vacant. Show taht at any stage of the game there is a pebble at some lattice point (a, b) with $0 \leq a+b \leq 3$

Day 2

1 Let $A B C$ be a triangle and let P be a point in its interior. Denote by D, E, F the feet of the perpendiculars from P to the lines $B C, C A, A B$, respectively. Suppose that

$$
A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2}
$$

Denote by I_{A}, I_{B}, I_{C} the excenters of the triangle $A B C$. Prove that P is the circumcenter of the triangle $I_{A} I_{B} I_{C}$.
Proposed by C.R. Pranesachar, India
2 Show that the only solutions of te equation

$$
p^{k}+1=q^{m}
$$

, in positive integers $k, q, m>1$ and prime p are
(i) $(p, k, q, m)=(2,3,3,2)$
(ii) $k=1, q=2$, and p is a prime of the form $2^{m}-1, m>1 \in \mathbb{N}$

3 Determine all functionf $f: \mathbb{R} \mapsto \mathbb{R}$ such that

$$
f(x+y)=f(x) f(y)-c \sin x \sin y
$$

for all reals x, y where $c>1$ is a given constant.

Day 3

1 Let $A B C$ be a triangle and I its incentre. Let ϱ_{1} and ϱ_{2} be the inradii of triangles $I A B$ and $I A C$ respectively.
(a) Show that there exists a function $f:(0, \pi) \mapsto \mathbb{R}$ such that

$$
\frac{\varrho_{1}}{\varrho_{2}}=\frac{f(C)}{f(B)}
$$

where $B=\angle A B C$ and $C=\angle B C A$
(b) Prove that

$$
2(\sqrt{2}-1)<\frac{\varrho_{1}}{\varrho_{2}}<\frac{1+\sqrt{2}}{2}
$$

$2 \quad$ Define a function $g: \mathbb{N} \mapsto \mathbb{N}$ by the following rule:
(a) g is nondecrasing
(b) for each $n, g(n)$ i sthe number of times n appears in the range of g,

Prove that $g(1)=1$ and $g(n+1)=1+g(n+1-g(g(n)))$ for all $n \in \mathbb{N}$
3 Two runners start running along a circular track of unit length from the same starting point and int he same sense, with constant speeds v_{1} and v_{2} respectively, where v_{1} and v_{2} are two distinct relatively prime natural numbers. They continue running till they simultneously reach the starting point. Prove that
(a) at any given time t, at least one of the runners is at a distance not more than $\frac{\left[\frac{v_{1}+v_{2}}{2}\right]}{v_{1}+v_{2}}$ units from the starting point.
(b) there is a time t such that both the runners are at least $\frac{\left[\frac{v_{1}+v_{2}}{2}\right]}{v_{1}+v_{2}}$ units away from the starting point. (All disstances are measured along the track). $[x]$ is the greatest integer function.

Day 4

AoPS Community

1 Let $x_{1}, x_{2}, x_{3}, \ldots . x_{n}$ be n real numbers such that $0<x_{j}<\frac{1}{2}$. Prove that

$$
\frac{\prod_{j=1}^{n} x_{j}}{\left(\sum_{j=1}^{n} x_{j}\right)^{n}} \leq \frac{\prod_{j=1}^{n}\left(1-x_{j}\right)}{\left(\sum_{j=1}^{n}\left(1-x_{j}\right)\right)^{n}}
$$

2 Find all primes $p \geq 3$ with the following property: for any prime $q<p$, the number

$$
p-\left\lfloor\frac{p}{q}\right\rfloor q
$$

is squarefree (i.e. is not divisible by the square of a prime).
3 Every point with integer coordinates in the plane is the center of a disk with radius $1 / 1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than 96.

Radu Gologan, Romania

The " $\llcorner 96$ " in (b) can be strengthened to " $\dot{\prime} 124$ ". By the way, part (a) of this problem is the place where I used the well-known "Dedekind" theorem (http://mathlinks.ro/viewtopic. php? $\mathrm{t}=5537$).

Day 5

1 Let $A B C$ be an acute-angled triangle and Γ be a circle with $A B$ as diameter intersecting $B C$ and $C A$ at $F(\neq B)$ and $E(\neq A)$ respectively. Tangents are drawn at E and F to Γ intersect at P. Show that the ratio of the circumcentre of triangle $A B C$ to that if $E F P$ is a rational number.

2 Let $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ and $Q(x)=x^{2}+p x+q$ be two real polynomials. Suppose that there exista an interval (r, s) of length greater than 2 SUCH THAT BOTH $P(x)$ AND $Q(x)$ ARE nEGATIVE FOR $X \in(r, s)$ and both are positive for $x>s$ and $x<r$. Show that there is a real x_{0} such that $P\left(x_{0}\right)<Q\left(x_{0}\right)$
$3 \quad$ An integer n is said to be good if $|n|$ is not the square of an integer. Determine all integers m with the following property: m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.
Proposed by Hojoo Lee, Korea

