Art of Problem Solving

AoPS Community

India International Mathematical Olympiad Training Camp 2006
www.artofproblemsolving.com/community/c5001
by Sayan, madatmath, rohitsingh0812

Day 1
1 Let n be a positive integer divisible by 4. Find the number of permutations σ of $(1,2,3, \cdots, n)$ which satisfy the condition $\sigma(j)+\sigma^{-1}(j)=n+1$ for all $j \in\{1,2,3, \cdots, n\}$.

2 Let $A B C D$ be a parallelogram. A variable line g through the vertex A intersects the rays $B C$ and $D C$ at the points X and Y, respectively. Let K and L be the A-excenters of the triangles $A B X$ and $A D Y$. Show that the angle $\measuredangle K C L$ is independent of the line g.
Proposed by Vyacheslev Yasinskiy, Ukraine
$3 \quad$ There are n markers, each with one side white and the other side black. In the beginning, these n markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $n-1$ is not divisible by 3 .
Proposed by Dusan Dukic, Serbia

Day 2

1 Let $A B C$ be a triangle and let P be a point in the plane of $A B C$ that is inside the region of the angle $B A C$ but outside triangle $A B C$.
(a) Prove that any two of the following statements imply the third.
(i) the circumcentre of triangle $P B C$ lies on the ray $\overrightarrow{P A}$.
(ii) the circumcentre of triangle $C P A$ lies on the ray $\overrightarrow{P B}$.
(iii) the circumcentre of triangle $A P B$ lies on the ray $\overrightarrow{P C}$.
(b) Prove that if the conditions in (a) hold, then the circumcentres of triangles $B P C, C P A$ and $A P B$ lie on the circumcircle of triangle $A B C$.

2 Let p be a prime number and let X be a finite set containing at least p elements. A collection of pairwise mutually disjoint p-element subsets of X is called a p-family. (In particular, the empty collection is a p-family.) Let A (respectively, B) denote the number of p-families having an even
(respectively, odd) number of p-element subsets of X. Prove that A and B differ by a multiple of p.

3 Let $A B C$ be an equilateral triangle, and let D, E and F be points on $B C, B A$ and $A B$ respectively. Let $\angle B A D=\alpha, \angle C B E=\beta$ and $\angle A C F=\gamma$. Prove that if $\alpha+\beta+\gamma \geq 120^{\circ}$, then the union of the triangular regions $B A D, C B E, A C F$ covers the triangle $A B C$.

Day 3

1 Let $A B C$ be a triangle with inradius r, circumradius R, and with sides $a=B C, b=C A, c=A B$. Prove that

$$
\frac{R}{2 r} \geq\left(\frac{64 a^{2} b^{2} c^{2}}{\left(4 a^{2}-(b-c)^{2}\right)\left(4 b^{2}-(c-a)^{2}\right)\left(4 c^{2}-(a-b)^{2}\right)}\right)^{2}
$$

2 the positive divisors $d_{1}, d_{2}, \cdots, d_{k}$ of a positive integer n are ordered

$$
1=d_{1}<d_{2}<\cdots<d_{k}=n
$$

Suppose $d_{7}^{2}+d_{15}^{2}=d_{16}^{2}$. Find all possible values of d_{17}.
3 Let $A_{1}, A_{2}, \cdots, A_{n}$ be arithmetic progressions of integers, each of k terms, such that any two of these arithmetic progressions have at least two common elements. Suppose b of these arithmetic progressions have common difference d_{1} and the remaining arithmetic progressions have common difference d_{2} where $0<b<n$. Prove that

$$
b \leq 2\left(k-\frac{d_{2}}{\operatorname{gcd}\left(d_{1}, d_{2}\right)}\right)-1 .
$$

Day 4

1 Find all triples (a, b, c) such that a, b, c are integers in the set $\{2000,2001, \ldots, 3000\}$ satisfying $a^{2}+b^{2}=c^{2}$ and $\operatorname{gcd}(a, b, c)=1$.

2 Let $u_{j k}$ be a real number for each $j=1,2,3$ and each $k=1,2$ and let N be an integer such that

$$
\max _{1 \leq k \leq 2} \sum_{j=1}^{3}\left|u_{j k}\right| \leq N
$$

Let M and l be positive integers such that $l^{2}<(M+1)^{3}$. Prove that there exist integers $\xi_{1}, \xi_{2}, \xi_{3}$ not all zero, such that

$$
\max _{1 \leq j \leq 3} \xi_{j} \leq M \quad \text { and } \quad\left|\sum_{j=1}^{3} u_{j k} \xi_{k}\right| \leq \frac{M N}{l} \quad \text { for } \mathrm{k}=1,2
$$

3 Let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of a finite set S such that $\left|A_{j}\right|=8$ for each j. For a subset B of S let $F(B)=\left\{j \mid 1 \leq j \leq n\right.$ and $\left.A_{j} \subset B\right\}$. Suppose for each subset B of S at least one of the following conditions holds
(a) $|B|>25$,
(b) $F(B)=\varnothing$,
(c) $\bigcap_{j \in F(B)} A_{j} \neq \varnothing$.

Prove that $A_{1} \cap A_{2} \cap \cdots \cap A_{n} \neq \varnothing$.

