

## **AoPS Community**

## 2007 India IMO Training Camp

### India International Mathematical Olympiad Training Camp 2007

www.artofproblemsolving.com/community/c5002

by Potla, e.lopes, pohoatza, mattilgale

- 1 Show that in a non-equilateral triangle, the following statements are equivalent: (*a*) The angles of the triangle are in arithmetic progression. (*b*) The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.
- 2 Find all integer solutions of the equation

$$\frac{x^7 - 1}{x - 1} = y^5 - 1.$$

**3** Let  $\mathbb{X}$  be the set of all bijective functions from the set  $S = \{1, 2, \dots, n\}$  to itself. For each  $f \in \mathbb{X}$ , define

$$T_f(j) = \begin{cases} 1, & \text{if } f^{(12)}(j) = j, \\ 0, & \text{otherwise} \end{cases}$$

 $\begin{array}{l} \text{Determine } \sum_{f\in\mathbb{X}}\sum_{j=1}^n T_f(j).\\ \text{(Here } f^{(k)}(x) = f(f^{(k-1)}(x)) \text{ for all } k\geq 2. \text{)} \end{array}$ 

### Day 2

1 Let ABCD be a trapezoid with parallel sides AB > CD. Points K and L lie on the line segments AB and CD, respectively, so that AK/KB = DL/LC. Suppose that there are points P and Q on the line segment KL satisfying

 $\angle APB = \angle BCD$  and  $\angle CQD = \angle ABC$ .

Prove that the points *P*, *Q*, *B* and *C* are concyclic.

Proposed by Vyacheslev Yasinskiy, Ukraine

**2** Let a, b, c be non-negative real numbers such that  $a + b \le c + 1, b + c \le a + 1$  and  $c + a \le b + 1$ . Show that

$$a^2 + b^2 + c^2 \le 2abc + 1.$$

### **AoPS Community**

# 2007 India IMO Training Camp

**3** Given a finite string *S* of symbols *X* and *O*, we denote  $\Delta(s)$  as the number of *X*'s in *S* minus the number of *O*'s (For example,  $\Delta(XOOXOOX) = -1$ ). We call a string *S* **balanced** if every substring *T* of (consecutive symbols) *S* has the property  $-1 \leq \Delta(T) \leq 2$ . (Thus XOOXOOX is not balanced, since it contains the sub-string OOXOO whose  $\Delta$  value is -3. Find, with proof, the number of balanced strings of length *n*.

#### Day 3

**1** A sequence of real numbers  $a_0, a_1, a_2, \ldots$  is defined by the formula

$$a_{i+1} = \lfloor a_i \rfloor \cdot \langle a_i \rangle$$
 for  $i \ge 0$ ;

here  $a_0$  is an arbitrary real number,  $\lfloor a_i \rfloor$  denotes the greatest integer not exceeding  $a_i$ , and  $\langle a_i \rangle = a_i - \lfloor a_i \rfloor$ . Prove that  $a_i = a_{i+2}$  for *i* sufficiently large.

Proposed by Harmel Nestra, Estionia

**2** Let *S* be a finite set of points in the plane such that no three of them are on a line. For each convex polygon *P* whose vertices are in *S*, let a(P) be the number of vertices of *P*, and let b(P) be the number of points of *S* which are outside *P*. A line segment, a point, and the empty set are considered as convex polygons of 2, 1, and 0 vertices respectively. Prove that for every real number *x* 

$$\sum_{P} x^{a(P)} (1-x)^{b(P)} = 1,$$

where the sum is taken over all convex polygons with vertices in S.

#### Alternative formulation:

Let M be a finite point set in the plane and no three points are collinear. A subset A of M will be called round if its elements is the set of vertices of a convex A-gon V(A). For each round subset let r(A) be the number of points from M which are exterior from the convex A-gon V(A). Subsets with 0, 1 and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset A of M construct the polynomial

$$P_A(x) = x^{|A|} (1-x)^{r(A)}.$$

Show that the sum of polynomials for all round subsets is exactly the polynomial P(x) = 1.

Proposed by Federico Ardila, Colombia

| Day | 4 |
|-----|---|
|-----|---|

1 Circles  $w_1$  and  $w_2$  with centres  $O_1$  and  $O_2$  are externally tangent at point D and internally tangent to a circle w at points E and F respectively. Line t is the common tangent of  $w_1$  and

### **AoPS Community**

# 2007 India IMO Training Camp

 $w_2$  at *D*. Let *AB* be the diameter of *w* perpendicular to *t*, so that *A*, *E*, *O*<sub>1</sub> are on the same side of *t*. Prove that lines *AO*<sub>1</sub>, *BO*<sub>2</sub>, *EF* and *t* are concurrent.

- **2** Find all integer solutions (x, y) of the equation  $y^2 = x^3 p^2 x$ , where p is a prime such that  $p \equiv 3 \mod 4$ .
- **3** Find all function(s)  $f : \mathbb{R} \to \mathbb{R}$  satisfying the equation

$$f(x+y) + f(x)f(y) = (1+y)f(x) + (1+x)f(y) + f(xy);$$

For all  $x, y \in \mathbb{R}$ .

