AoPS Community

India International Mathematical Olympiad Training Camp 2007

www.artofproblemsolving.com/community/c5002
by Potla, e.lopes, pohoatza, mattilgale

Day 1

1 Show that in a non-equilateral triangle, the following statements are equivalent: (a) The angles of the triangle are in arithmetic progression. (b) The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.

2 Find all integer solutions of the equation

$$
\frac{x^{7}-1}{x-1}=y^{5}-1
$$

3 Let \mathbb{X} be the set of all bijective functions from the set $S=\{1,2, \cdots, n\}$ to itself. For each $f \in \mathbb{X}$, define

$$
T_{f}(j)= \begin{cases}1, & \text { if } f^{(12)}(j)=j \\ 0, & \text { otherwise }\end{cases}
$$

Determine $\sum_{f \in \mathbb{X}} \sum_{j=1}^{n} T_{f}(j)$.
(Here $f^{(k)}(x)=f\left(f^{(k-1)}(x)\right)$ for all $k \geq 2$.)

Day 2

1 Let $A B C D$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $A K / K B=D L / L C$. Suppose that there are points P and Q on the line segment $K L$ satisfying

$$
\angle A P B=\angle B C D \quad \text { and } \quad \angle C Q D=\angle A B C .
$$

Prove that the points P, Q, B and C are concyclic.
Proposed by Vyacheslev Yasinskiy, Ukraine
2 Let a, b, c be non-negative real numbers such that $a+b \leq c+1, b+c \leq a+1$ and $c+a \leq b+1$. Show that

$$
a^{2}+b^{2}+c^{2} \leq 2 a b c+1
$$

AoPS Community

2007 India IMO Training Camp

$3 \quad$ Given a finite string S of symbols X and O, we denote $\Delta(s)$ as the number of X^{\prime} s in S minus the number of O^{\prime} s (For example, $\triangle(X O O X O O X)=-1$). We call a string S balanced if every substring T of (consecutive symbols) S has the property $-1 \leq \Delta(T) \leq 2$. (Thus XOOXOOX is not balanced, since it contains the sub-string $O O X O O$ whose Δ value is -3 . Find, with proof, the number of balanced strings of length n.

Day 3

1 A sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined by the formula

$$
a_{i+1}=\left\lfloor a_{i}\right\rfloor \cdot\left\langle a_{i}\right\rangle \quad \text { for } \quad i \geq 0 ;
$$

here a_{0} is an arbitrary real number, $\left\lfloor a_{i}\right\rfloor$ denotes the greatest integer not exceeding a_{i}, and $\left\langle a_{i}\right\rangle=a_{i}-\left\lfloor a_{i}\right\rfloor$. Prove that $a_{i}=a_{i+2}$ for i sufficiently large.

Proposed by Harmel Nestra, Estionia
2 Let S be a finite set of points in the plane such that no three of them are on a line. For each convex polygon P whose vertices are in S, let $a(P)$ be the number of vertices of P, and let $b(P)$ be the number of points of S which are outside P. A line segment, a point, and the empty set are considered as convex polygons of 2,1 , and 0 vertices respectively. Prove that for every real number x

$$
\sum_{P} x^{a(P)}(1-x)^{b(P)}=1,
$$

where the sum is taken over all convex polygons with vertices in S.

Alternative formulation:

Let M be a finite point set in the plane and no three points are collinear. A subset A of M will be called round if its elements is the set of vertices of a convex A-gon $V(A)$. For each round subset let $r(A)$ be the number of points from M which are exterior from the convex A-gon $V(A)$. Subsets with 0,1 and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset A of M construct the polynomial

$$
P_{A}(x)=x^{|A|}(1-x)^{r(A)} .
$$

Show that the sum of polynomials for all round subsets is exactly the polynomial $P(x)=1$.
Proposed by Federico Ardila, Colombia

Day 4

1 Circles w_{1} and w_{2} with centres O_{1} and O_{2} are externally tangent at point D and internally tangent to a circle w at points E and F respectively. Line t is the common tangent of w_{1} and
w_{2} at D. Let $A B$ be the diameter of w perpendicular to t, so that A, E, O_{1} are on the same side of t. Prove that lines $A O_{1}, B O_{2}, E F$ and t are concurrent.

2 Find all integer solutions (x, y) of the equation $y^{2}=x^{3}-p^{2} x$, where p is a prime such that $p \equiv 3 \bmod 4$.

3 Find all function(s) $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f(x+y)+f(x) f(y)=(1+y) f(x)+(1+x) f(y)+f(x y) ;
$$

For all $x, y \in \mathbb{R}$.

