Art of Problem Solving

AoPS Community

India International Mathematical Olympiad Training Camp 2010

www.artofproblemsolving.com/community/c5004
by Akashnil, Goutham

1 Let $A B C$ be a triangle in which $B C<A C$. Let M be the mid-point of $A B, A P$ be the altitude from A on $B C$, and $B Q$ be the altitude from B on to $A C$. Suppose that $Q P$ produced meets $A B$ (extended) at T. If H is the orthocenter of $A B C$, prove that $T H$ is perpendicular to $C M$.

2 Two polynomials $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ and $Q(x)=x^{2}+p x+q$ have real coefficients, and I is an interval on the real line of length greater than 2. Suppose $P(x)$ and $Q(x)$ take negative values on I, and they take non-negative values outside I. Prove that there exists a real number x_{0} such that $P\left(x_{0}\right)<Q\left(x_{0}\right)$.
$3 \quad$ For any integer $n \geq 2$, let $N(n)$ be the maximum number of triples $\left(a_{j}, b_{j}, c_{j}\right), j=1,2,3, \cdots, N(n)$, consisting of non-negative integers a_{j}, b_{j}, c_{j} (not necessarily distinct) such that the following two conditions are satisfied:
(a) $a_{j}+b_{j}+c_{j}=n$, for all $j=1,2,3, \cdots N(n)$;
(b) $j \neq k$, then $a_{j} \neq a_{k}, b_{j} \neq b_{k}$ and $c_{j} \neq c_{k}$.

Determine $N(n)$ for all $n \geq 2$.
4 Let a, b, c be positive real numbers such that $a b+b c+c a \leq 3 a b c$. Prove that

$$
\sqrt{\frac{a^{2}+b^{2}}{a+b}}+\sqrt{\frac{b^{2}+c^{2}}{b+c}}+\sqrt{\frac{c^{2}+a^{2}}{c+a}}+3 \leq \sqrt{2}(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})
$$

$5 \quad$ Given an integer $k>1$, show that there exist an integer an $n>1$ and distinct positive integers $a_{1}, a_{2}, \cdots a_{n}$, all greater than 1 , such that the sums $\sum_{j=1}^{n} a_{j}$ and $\sum_{j=1}^{n} \phi\left(a_{j}\right)$ are both k-th powers of some integers.
(Here $\phi(m)$ denotes the number of positive integers less than m and relatively prime to m.)
6 Let $n \geq 2$ be a given integer. Show that the number of strings of length n consisting of $0^{\prime} s$ and 1 's such that there are equal number of 00 and 11 blocks in each string is equal to

$$
2\binom{n-2}{\left\lfloor\frac{n-2}{2}\right\rfloor}
$$

7 Let $A B C D$ be a cyclic quadrilaterla and let E be the point of intersection of its diagonals $A C$ and $B D$. Suppose $A D$ and $B C$ meet in F. Let the midpoints of $A B$ and $C D$ be G and H respectively. If Γ is the circumcircle of triangle $E G H$, prove that $F E$ is tangent to Γ.

8 Call a positive integer good if either $N=1$ or N can be written as product of even number of prime numbers, not necessarily distinct.
Let $P(x)=(x-a)(x-b)$, where a, b are positive integers.
(a) Show that there exist distinct positive integers a, b such that $P(1), P(2), \cdots, P(2010)$ are all good numbers.
(b) Suppose a, b are such that $P(n)$ is a good number for all positive integers n. Prove that $a=b$.

9 Let $A=\left(a_{j k}\right)$ be a 10×10 array of positive real numbers such that the sum of numbers in row as well as in each column is 1 .
Show that there exists $j<k$ and $l<m$ such that

$$
a_{j l} a_{k m}+a_{j m} a_{k l} \geq \frac{1}{50}
$$

10 Let $A B C$ be a triangle. Let Ω be the brocard point. Prove that $\left(\frac{A \Omega}{B C}\right)^{2}+\left(\frac{B \Omega}{A C}\right)^{2}+\left(\frac{C \Omega}{A B}\right)^{2} \geq 1$
11 Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x+y)+x y=f(x) f(y)$ for all reals x, y
12 Prove that there are infinitely many positive integers m for which there exists consecutive odd positive integers $p_{m}<q_{m}$ such that $p_{m}^{2}+p_{m} q_{m}+q_{m}^{2}$ and $p_{m}^{2}+m \cdot p_{m} q_{m}+q_{m}^{2}$ are both perfect squares. If m_{1}, m_{2} are two positive integers satisfying this condition, then we have $p_{m_{1}} \neq p_{m_{2}}$

