AoPS Community

India International Mathematical Olympiad Training Camp 2011

www.artofproblemsolving.com/community/c5005
by r1234, orl, RSM, Krishnendu, Amir Hossein, dule_00, chinacai

Day 1

1 Let $A B C$ be a triangle each of whose angles is greater than 30°. Suppose a circle centered with P cuts segments $B C$ in $T, Q ; C A$ in K, L and $A B$ in M, N such that they are on a circle in counterclockwise direction in that order. Suppose further $P Q K, P L M, P N T$ are equilateral. Prove that:
a) The radius of the circle is $\frac{2 a b c}{a^{2}+b^{2}+c^{2}+4 \sqrt{3} S}$ where S is area.
b) $a \cdot A P=b \cdot B P=c \cdot P C$.

2 Let the real numbers a, b, c, d satisfy the relations $a+b+c+d=6$ and $a^{2}+b^{2}+c^{2}+d^{2}=12$. Prove that

$$
36 \leq 4\left(a^{3}+b^{3}+c^{3}+d^{3}\right)-\left(a^{4}+b^{4}+c^{4}+d^{4}\right) \leq 48 .
$$

Proposed by Nazar Serdyuk, Ukraine
3 A set of n distinct integer weights $w_{1}, w_{2}, \ldots, w_{n}$ is said to be balanced if after removing any one of weights, the remaining $(n-1)$ weights can be split into two subcollections (not necessarily with equal size)with equal sum.
a) Prove that if there exist balanced sets of sizes k, j then also a balanced set of size $k+j-1$.
b) Prove that for all odd $n \geq 7$ there exist a balanced set of size n.

Day 2

1 Find all positive integer n satisfying the conditions
a) $n^{2}=(a+1)^{3}-a^{3}$
b) $2 n+119$ is a perfect square.

2 Suppose a_{1}, \ldots, a_{n} are non-integral real numbers for $n \geq 2$ such that $a_{1}{ }^{k}+\ldots+a_{n}{ }^{k}$ is an integer for all integers $1 \leq k \leq n$. Prove that none of a_{1}, \ldots, a_{n} is rational.
$3 \quad$ Let T be a non-empty finite subset of positive integers ≥ 1. A subset S of T is called good if for every integer $t \in T$ there exists an s in S such that $\operatorname{gcd}(t, s)>1$. Let

$$
A=(X, Y) \mid X \subseteq T, Y \subseteq T, \operatorname{gcd}(x, y)=1 \text { for all } x \in X, y \in Y
$$

Prove that : a) If X_{0} is not good then the number of pairs $\left(X_{0}, Y\right)$ in A is even. b) the number of good subsets of T is odd.

Day 3

1 Let $A B C D E$ be a convex pentagon such that $B C \| A E, A B=B C+A E$, and $\angle A B C=\angle C D E$. Let M be the midpoint of $C E$, and let O be the circumcenter of triangle $B C D$. Given that $\angle D M O=90^{\circ}$, prove that $2 \angle B D A=\angle C D E$.

Proposed by Nazar Serdyuk, Ukraine
2 Prove that for no integer n is $n^{7}+7$ a perfect square.
3 Consider a $n \times n$ square grid which is divided into n^{2} unit squares(think of a chess-board). The set of all unit squares intersecting the main diagonal of the square or lying under it is called an n-staircase. Find the number of ways in which an n-stair case can be partitioned into several rectangles, with sides along the grid lines, having mutually distinct areas.

Day 4

1 Let $A B C$ be an acute-angled triangle. Let $A D, B E, C F$ be internal bisectors with D, E, F on $B C, C A, A B$ respectively. Prove that

$$
\frac{E F}{B C}+\frac{F D}{C A}+\frac{D E}{A B} \geq 1+\frac{r}{R}
$$

2 Find all pairs (m, n) of nonnegative integers for which

$$
m^{2}+2 \cdot 3^{n}=m\left(2^{n+1}-1\right) .
$$

Proposed by Angelo Di Pasquale, Australia

3 Let $\left\{a_{0}, a_{1}, \ldots\right\}$ and $\left\{b_{0}, b_{1}, \ldots\right\}$ be two infinite sequences of integers such that

$$
\left(a_{n}-a_{n-1}\right)\left(a_{n}-a_{n-2}\right)+\left(b_{n}-b_{n-1}\right)\left(b_{n}-b_{n-2}\right)=0
$$

for all integers $n \geq 2$. Prove that there exists a positive integer k such that

$$
a_{k+2011}=a_{k+2011^{2011}}
$$

