Art of Problem Solving

AoPS Community

India International Mathematical Olympiad Training Camp 2014

www.artofproblemsolving.com/community/c5008
by hajimbrak, lyukhson

- \quad Practice Test 1
- April 27th

1 Let p be an odd prime and r an odd natural number. Show that $p r+1$ does not divide $p^{p}-1$
2 Let a, b be positive real numbers.Prove that $(1+a)^{8}+(1+b)^{8} \geq 128 a b(a+b)^{2}$.
3 In a triangle $A B C$, points X and Y are on $B C$ and $C A$ respectively such that $C X=C Y, A X$ is not perpendicular to $B C$ and $B Y$ is not perpendicular to $C A$. Let Γ be the circle with C as centre and $C X$ as its radius. Find the angles of triangle $A B C$ given that the orthocentres of triangles $A X B$ and $A Y B$ lie on Γ.

- \quad Practice Test 2
- May 2nd

1 Let x and y be rational numbers, such that $x^{5}+y^{5}=2 x^{2} y^{2}$. Prove that $1-x y$ is the square of a rational number.

2 Let n be a natural number.A triangulation of a convex n -gon is a division of the polygon into $n-2$ triangles by drawing $n-3$ diagonals no two of which intersect at an interior point of the polygon.Let $f(n)$ denote the number of triangulations of a regular n-gon such that each of the triangles formed is isosceles. Determine $f(n)$ in terms of n.

3 For integers a, b we define $f((a, b))=(2 a, b-a)$ if $a<b$ and $f((a, b))=(a-b, 2 b)$ if $a \geq b$. Given a natural number $n>1$ show that there exist natural numbers m, k with $m<n$ such that $f^{k}((n, m))=(m, n)$, where $f^{k}(x)=f(f(f(\ldots f(x)))), f$ being composed with itself k times.

- TST 1
- May 7th

1 Find all polynomials $f(x)$ with integer coefficients such that $f(n)$ and $f\left(2^{n}\right)$ are co-prime for all natural numbers n.

2 Let n be an positive integer. Find the smallest integer k with the following property; Given any real numbers a_{1}, \cdots, a_{d} such that $a_{1}+a_{2}+\cdots+a_{d}=n$ and $0 \leq a_{i} \leq 1$ for $i=1,2, \cdots, d$, it
is possible to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1 .

3 Starting with the triple $(1007 \sqrt{2}, 2014 \sqrt{2}, 1007 \sqrt{14})$, define a sequence of triples $\left(x_{n}, y_{n}, z_{n}\right)$ by $x_{n+1}=\sqrt{x_{n}\left(y_{n}+z_{n}-x_{n}\right)}$ $y_{n+1}=\sqrt{y_{n}\left(z_{n}+x_{n}-y_{n}\right)} z_{n+1}=\sqrt{z_{n}\left(x_{n}+y_{n}-z_{n}\right)}$
for $n \geq 0$. Show that each of the sequences $\left\langle x_{n}\right\rangle_{n \geq 0},\left\langle y_{n}\right\rangle_{n \geq 0},\left\langle z_{n}\right\rangle_{n \geq 0}$ converges to a limit and find these limits.

- TST 2

- May 8th

1 In a triangle $A B C$, let I be its incenter; Q the point at which the incircle touches the line $A C$; E the midpoint of $A C$ and K the orthocenter of triangle BIC. Prove that the line $K Q$ is perpendicular to the line $I E$.

2 For $j=1,2,3$ let x_{j}, y_{j} be non-zero real numbers, and let $v_{j}=x_{j}+y_{j}$.Suppose that the following statements hold:
$x_{1} x_{2} x_{3}=-y_{1} y_{2} y_{3}$
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}$
v_{1}, v_{2}, v_{3} satisfy triangle inequality
$v_{1}^{2}, v_{2}^{2}, v_{3}^{2}$ also satisfy triangle inequality.
Prove that exactly one of $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ is negative.
3 Let r be a positive integer, and let a_{0}, a_{1}, \cdots be an infinite sequence of real numbers. Assume that for all nonnegative integers m and s there exists a positive integer $n \in[m+1, m+r]$ such that

$$
a_{m}+a_{m+1}+\cdots+a_{m+s}=a_{n}+a_{n+1}+\cdots+a_{n+s}
$$

Prove that the sequence is periodic, i.e. there exists some $p \geq 1$ such that $a_{n+p}=a_{n}$ for all $n \geq 0$.

- TST 3

- May 14th

1 In a triangle $A B C$, with $A B \neq A C$ and $A \neq 60^{\circ}, 120^{\circ}, D$ is a point on line $A C$ different from C. Suppose that the circumcentres and orthocentres of triangles $A B C$ and $A B D$ lie on a circle. Prove that $\angle A B D=\angle A C B$.

2 Determine whether there exists an infinite sequence of nonzero digits $a_{1}, a_{2}, a_{3}, \cdots$ and a positive integer N such that for every integer $k>N$, the number $\overline{a_{k} a_{k-1} \cdots a_{1}}$ is a perfect square.

3 In how many ways rooks can be placed on a 8 by 8 chess board such that every row and every column has at least one rook?
(Any number of rooks are available,each square can have at most one rook and there is no relation of attacking between them)

- TST 4
- May 15th

1 Prove that in any set of 2000 distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d$, such that

$$
\left|\frac{a-b}{c-d}-1\right|<\frac{1}{100000}
$$

2 Find all positive integers x and y such that $x^{x+y}=y^{3 x}$.
3 Let $A B C$ be a triangle with $\angle B>\angle C$. Let P and Q be two different points on line $A C$ such that $\angle P B A=\angle Q B A=\angle A C B$ and A is located between P and C. Suppose that there exists an interior point D of segment $B Q$ for which $P D=P B$. Let the ray $A D$ intersect the circle $A B C$ at $R \neq A$. Prove that $Q B=Q R$.

