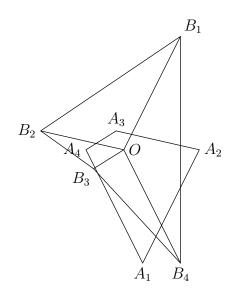


AoPS Community

Canada National Olympiad 1982

www.artofproblemsolving.com/community/c5027 by Amir Hossein, taemik

1 In the diagram, OB_i is parallel and equal in length to A_iA_{i+1} for i = 1, 2, 3, and 4 ($A_5 = A_1$). Show that the area of $B_1B_2B_3B_4$ is twice that of $A_1A_2A_3A_4$.



2 If *a*, *b* and *c* are the roots of the equation $x^3 - x^2 - x - 1 = 0$, (i) show that *a*, *b* and *c* are distinct: (ii) show that $\frac{a^{1982} - b^{1982}}{a - b} + \frac{b^{1982} - c^{1982}}{b - c} + \frac{c^{1982} - a^{1982}}{c - a}$

is an integer.

- **3** Let \mathbb{R}^n be the *n*-dimensional Euclidean space. Determine the smallest number g(n) of a points of a set in \mathbb{R}^n such that every point in \mathbb{R}^n is an irrational distance from at least one point in that set.
- **4** Let *p* be a permutation of the set $S_n = \{1, 2, ..., n\}$. An element $j \in S_n$ is called a fixed point of *p* if p(j) = j. Let f_n be the number of permutations having no fixed points, and g_n be the number with exactly one fixed point. Show that $|f_n g_n| = 1$.
- 5 The altitudes of a tetrahedron *ABCD* are extended externally to points *A'*, *B'*, *C'*, and *D'*, where

AoPS Community

1982 Canada National Olympiad

 $AA' = k/h_a$, $BB' = k/h_b$, $CC' = k/h_c$, and $DD' = k/h_d$. Here, k is a constant and h_a denotes the length of the altitude of ABCD from vertex A, etc. Prove that the centroid of tetrahedron A'B'C'D' coincides with the centroid of ABCD.

Act of Problem Solving is an ACS WASC Accredited School.