AoPS Community

Canada National Olympiad 1983

www.artofproblemsolving.com/community/c5028
by BigSams
$1 \quad$ Find all positive integers w, x, y and z which satisfy $w!=x!+y!+z!$.
2 For each $r \in \mathbb{R}$ let T_{r} be the transformation of the plane that takes the point (x, y) into the point ($2^{r} x ; r 2^{r} x+2^{r} y$). Let F be the family of all such transformations (i.e. $F=\left\{T_{r}: r \in \mathbb{R}\right\}$). Find all curves $y=f(x)$ whose graphs remain unchanged by every transformation in F.

3 The area of a triangle is determined by the lengths of its sides. Is the volume of a tetrahedron determined by the areas of its faces?

4 Prove that for every prime number p, there are infinitely many positive integers n such that p divides $2^{n}-n$.

5 The geometric mean (G.M.) of k positive integers $a_{1}, a_{2}, \ldots, a_{k}$ is defined to be the (positive) k-th root of their product. For example, the G.M. of $3,4,18$ is 6 . Show that the G.M. of a set S of n positive numbers is equal to the G.M. of the G.M.'s of all non-empty subsets of S.

