AoPS Community

Canada National Olympiad 1984

www.artofproblemsolving.com/community/c5029
by BigSams

1 Prove that the sum of the squares of 1984 consecutive positive integers cannot be the square of an integer.

2 Alice and Bob are in a hardware store. The store sells coloured sleeves that fit over keys to distinguish them. The following conversation takes place:
Alice: Are you going to cover your keys?
Bob: I would like to, but there are only 7 colours and I have 8 keys.
Alice: Yes, but you could always distinguish a key by noticing that the red key next to the green key was different from the red key next to the blue key.
Bob: You must be careful what you mean by "next to" or "three keys over from" since you can turn the key ring over and the keys are arranged in a circle.
Alice: Even so, you don't need 8 colours.
Problem: What is the smallest number of colours needed to distinguish n keys if all the keys are to be covered.

3 An integer is digitally divisible if both of the following conditions are fulfilled: (a) None of its digits is zero; (b) It is divisible by the sum of its digits e.g. 322 is digitally divisible. Show that there are infinitely many digitally divisible integers.

4 An acute triangle has unit area. Show that there is a point inside the triangle whose distance from each of the vertices is at least $\frac{2}{\sqrt[4]{27}}$.
$5 \quad$ Given any 7 real numbers, prove that there are two of them x, y such that $0 \leq \frac{x-y}{1+x y} \leq \frac{1}{\sqrt{3}}$.

