

AoPS Community

Canada National Olympiad 1985

www.artofproblemsolving.com/community/c5030 by Amir Hossein

1	The lengths of the sides of a triangle are 6, 8 and 10 units. Prove that there is exactly one straight line which simultaneously bisects the area and perimeter of the triangle.
2	Prove or disprove that there exists an integer which is doubled when the initial digit is trans- ferred to the end.
3	Let P_1 and P_2 be regular polygons of 1985 sides and perimeters x and y respectively. Each side of P_1 is tangent to a given circle of circumference c and this circle passes through each vertex of P_2 . Prove $x + y \ge 2c$. (You may assume that $\tan \theta \ge \theta$ for $0 \le \theta < \frac{\pi}{2}$.)
4	Prove that 2^{n-1} divides $n!$ if and only if $n = 2^{k-1}$ for some positive integer k .
5	Let $1 < x_1 < 2$ and, for $n = 1, 2,,$ define $x_{n+1} = 1 + x_n - \frac{1}{2}x_n^2$. Prove that, for $n \ge 3$, $ x_n - \sqrt{2} < 2^{-n}$.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱