

AoPS Community

Canada National Olympiad 1987

www.artofproblemsolving.com/community/c5032 by Amir Hossein

1	Find all solutions of $a^2 + b^2 = n!$ for positive integers a , b , n with $a \le b$ and $n < 14$.
2	The number 1987 can be written as a three digit number xyz in some base b . If $x + y + z = 1 + 9 + 8 + 7$, determine all possible values of x , y , z , b .
3	Suppose $ABCD$ is a parallelogram and E is a point between B and C on the line BC . If the triangles DEC , BED and BAD are isosceles what are the possible values for the angle DAB ?
4	On a large, flat field n people are positioned so that for each person the distances to all the other people are different. Each person holds a water pistol and at a given signal fires and hits the person who is closest. When n is odd show that there is at least one person left dry. Is this always true when n is even?
5	For every positive integer n show that

 $[\sqrt{4n+1}] = [\sqrt{4n+2}] = [\sqrt{4n+3}] = [\sqrt{n} + \sqrt{n+1}]$

where [x] is the greatest integer less than or equal to x (for example [2.3] = 2, $[\pi] = 3$, [5] = 5).

AoPS Online 🔯 AoPS Academy 🔯 AoPS and AoPS