AoPS Community

Canada National Olympiad 1988

www.artofproblemsolving.com/community/c5033
by Amir Hossein

1 For what real values of k do $1988 x^{2}+k x+8891$ and $8891 x^{2}+k x+1988$ have a common zero?
$2 \quad$ A house is in the shape of a triangle, perimeter P metres and area A square metres. The garden consists of all the land within 5 metres of the house. How much land do the garden and house together occupy?

3 Suppose that S is a finite set of at least five points in the plane; some are coloured red, the others are coloured blue. No subset of three or more similarly coloured points is collinear. Show that there is a triangle
(i) whose vertices are all the same colour, and
(ii) at least one side of the triangle does not contain a point of the opposite colour.

4 Let $x_{n+1}=4 x_{n}-x_{n-1}, x_{0}=0, x_{1}=1$, and $y_{n+1}=4 y_{n}-y_{n-1}, y_{0}=1, y_{1}=2$. Show that for all $n \geq 0$ that $y_{n}^{2}=3 x_{n}^{2}+1$.
$5 \quad$ If S is a sequence of positive integers let $p(S)$ be the product of the members of S. Let $m(S)$ be the arithmetic mean of $p(T)$ for all non-empty subsets T of S. Suppose that S^{\prime} is formed from S by appending an additional positive integer. If $m(S)=13$ and $m\left(S^{\prime}\right)=49$, find S^{\prime}.

