AoPS Community

Canada National Olympiad 1990

www.artofproblemsolving.com/community/c5035
by Amir Hossein, moldovan

1 A competition involving $n \geq 2$ players was held over k days. In each day, the players received scores of $1,2,3, \ldots, n$ points with no players receiving the same score. At the end of the k days, it was found that each player had exactly 26 points in total. Determine all pairs (n, k) for which this is possible.
$2 \quad \frac{n(n+1)}{2}$ distinct numbers are arranged at random into n rows. The first row has 1 number, the second has 2 numbers, the third has 3 numbers and so on. Find the probability that the largest number in each row is smaller than the largest number in each row with more numbers.

3 The feet of the perpendiculars from the intersection point of the diagonals of a convex cyclic quadrilateral to the sides form a quadrilateral q. Show that the sum of the lengths of each pair of opposite sides of q is equal.

4 A particle can travel at speeds up to $\frac{2 m}{s}$ along the x-axis, and up to $\frac{1 m}{s}$ elsewhere in the plane. Provide a labelled sketch of the region which can be reached within one second by the particle starting at the origin.
$5 \quad$ The function $f: \mathbb{N} \rightarrow \mathbb{R}$ satisfies $f(1)=1, f(2)=2$ and

$$
f(n+2)=f(n+2-f(n+1))+f(n+1-f(n)) .
$$

Show that $0 \leq f(n+1)-f(n) \leq 1$. Find all n for which $f(n)=1025$.

