

AoPS Community

1991 Canada National Olympiad

Canada National Olympiad 1991

www.artofproblemsolving.com/community/c5036 by AwesomeToad, Amir Hossein

- 1 Show that the equation $x^2 + y^5 = z^3$ has infinitely many solutions in integers x, y, z for which $xyz \neq 0$.
- **2** Let n be a fixed positive integer. Find the sum of all positive integers with the property that in base 2 each has exactly 2n digits, consisting of n 1's and n 0's. (The first digit cannot be 0.)
- **3** Let *C* be a circle and *P* a given point in the plane. Each line through *P* which intersects *C* determines a chord of *C*. Show that the midpoints of these chords lie on a circle.
- 4 Can ten distinct numbers $a_1, a_2, b_1, b_2, b_3, c_1, c_2, d_1, d_2, d_3$ be chosen from $\{0, 1, 2, \dots, 14\}$, so that the 14 differences $|a_1 b_1|$, $|a_1 b_2|$, $|a_1 b_3|$, $|a_2 b_1|$, $|a_2 b_2|$, $|a_2 b_3|$, $|c_1 d_1|$, $|c_1 d_2|$, $|c_1 d_3|$, $|c_2 d_1|$, $|c_2 d_2|$, $|c_2 d_3|$, $|a_1 c_1|$, and $|a_2 c_2|$ are all distinct?
- **5** The sides of an equilateral triangle ABC are divided into n equal parts $(n \ge 2)$. For each point on a side, we draw the lines parallel to other sides of the triangle ABC, e.g. for n = 3 we have the following diagram:

For each $n \ge 2$, find the number of existing parallelograms.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.