AoPS Community

Canada National Olympiad 1991

www.artofproblemsolving.com/community/c5036
by AwesomeToad, Amir Hossein

1 Show that the equation $x^{2}+y^{5}=z^{3}$ has infinitely many solutions in integers x, y, z for which $x y z \neq 0$.

2 Let n be a fixed positive integer. Find the sum of all positive integers with the property that in base 2 each has exactly $2 n$ digits, consisting of $n 1$'s and $n 0$'s. (The first digit cannot be 0 .)

3 Let C be a circle and P a given point in the plane. Each line through P which intersects C determines a chord of C. Show that the midpoints of these chords lie on a circle.

4 Can ten distinct numbers $a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, d_{1}, d_{2}, d_{3}$ be chosen from $\{0,1,2, \ldots, 14\}$, so that the 14 differences $\left|a_{1}-b_{1}\right|,\left|a_{1}-b_{2}\right|,\left|a_{1}-b_{3}\right|,\left|a_{2}-b_{1}\right|,\left|a_{2}-b_{2}\right|,\left|a_{2}-b_{3}\right|,\left|c_{1}-d_{1}\right|,\left|c_{1}-d_{2}\right|$, $\left|c_{1}-d_{3}\right|,\left|c_{2}-d_{1}\right|,\left|c_{2}-d_{2}\right|,\left|c_{2}-d_{3}\right|,\left|a_{1}-c_{1}\right|$, and $\left|a_{2}-c_{2}\right|$ are all distinct?
$5 \quad$ The sides of an equilateral triangle $A B C$ are divided into n equal parts $(n \geq 2)$. For each point on a side, we draw the lines parallel to other sides of the triangle $A B C$, e.g. for $n=3$ we have the following diagram:

For each $n \geq 2$, find the number of existing parallelograms.

