

AoPS Community

Canada National Olympiad 1994

www.artofproblemsolving.com/community/c5039 by BigSams

1	Evaluate $\sum_{n=1}^{1994} \left((-1)^n \cdot \left(rac{n^2 + n + 1}{n!} ight) ight)$.
2	Prove that $(\sqrt{2}-1)^n \forall n \in \mathbb{Z}^+$ can be represented as $\sqrt{m} - \sqrt{m-1}$ for some $m \in \mathbb{Z}^+$.
3	25 men sit around a circular table. Every hour there is a vote, and each must respond <i>yes</i> or <i>no</i> . Each man behaves as follows: on the n^{th} , vote if his response is the same as the response of at least one of the two people he sits between, then he will respond the same way on the $(n+1)^{\text{th}}$ vote as on the n^{th} vote; but if his response is different from that of both his neighbours on the n^{th} vote, then his response on the $(n+1)^{\text{th}}$ vote will be different from his response on the n^{th} vote. Prove that, however everybody responded on the first vote, there will be a time after which nobody's response will ever change.

- **4** Let *AB* be a diameter of a circle Ω and *P* be any point not on the line through *AB*. Suppose that the line through *PA* cuts Ω again at *U*, and the line through *PB* cuts Ω at *V*. Note that in case of tangency, *U* may coincide with *A* or *V* might coincide with *B*. Also, if *P* is on Ω then P = U = V. Suppose that |PU| = s|PA| and |PV| = t|PB| for some $0 \le s, t \in \mathbb{R}$. Determine $\cos \angle APB$ in terms of *s*, *t*.
- **5** Let ABC be an acute triangle. Let AD be the altitude on BC, and let H be any interior point on AD. Lines BH, CH, when extended, intersect AC, AB at E, F respectively. Prove that $\angle EDH = \angle FDH$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱