AoPS Community

Canada National Olympiad 1994

www.artofproblemsolving.com/community/c5039
by BigSams

1 Evaluate $\sum_{n=1}^{1994}\left((-1)^{n} \cdot\left(\frac{n^{2}+n+1}{n!}\right)\right)$.
2 Prove that $(\sqrt{2}-1)^{n} \forall n \in \mathbb{Z}^{+}$can be represented as $\sqrt{m}-\sqrt{m-1}$ for some $m \in \mathbb{Z}^{+}$.
325 men sit around a circular table. Every hour there is a vote, and each must respond yes or no. Each man behaves as follows: on the $n^{\text {th }}$, vote if his response is the same as the response of at least one of the two people he sits between, then he will respond the same way on the $(n+1)^{\text {th }}$ vote as on the $n^{\text {th }}$ vote; but if his response is different from that of both his neighbours on the $n^{\text {th }}$ vote, then his response on the $(n+1)^{\text {th }}$ vote will be different from his response on the $n^{\text {th }}$ vote. Prove that, however everybody responded on the first vote, there will be a time after which nobody's response will ever change.

4 Let $A B$ be a diameter of a circle Ω and P be any point not on the line through $A B$. Suppose that the line through $P A$ cuts Ω again at U, and the line through $P B$ cuts Ω at V. Note that in case of tangency, U may coincide with A or V might coincide with B. Also, if P is on Ω then $P=U=V$. Suppose that $|P U|=s|P A|$ and $|P V|=t|P B|$ for some $0 \leq s, t \in \mathbb{R}$. Determine $\cos \angle A P B$ in terms of s, t.

5 Let $A B C$ be an acute triangle. Let $A D$ be the altitude on $B C$, and let H be any interior point on $A D$. Lines $B H, C H$, when extended, intersect $A C, A B$ at E, F respectively. Prove that $\angle E D H=$ $\angle F D H$.

