AoPS Community

Canada National Olympiad 1995

www.artofproblemsolving.com/community/c5040
by BigSams

1 Let $f(x)=\frac{9^{x}}{9^{x}+3}$. Evaluate $\sum_{i=1}^{1995} f\left(\frac{i}{1996}\right)$.
2 Let $\{a, b, c\} \in \mathbb{R}^{+}$. Prove that $a^{a} b^{b} c^{c} \geq(a b c)^{\frac{a+b+c}{3}}$.
3 Define a boomerang as a quadrilateral whose opposite sides do not intersect and one of whose internal angles is greater than 180°. Let C be a convex polygon with s sides. The interior region of C is the union of q quadrilaterals, none of whose interiors overlap each other. b of these quadrilaterals are boomerangs. Show that $q \geq b+\frac{s-2}{2}$.

4 Let n be a constant positive integer. Show that for only non-negative integers k, the Diophantine equation $\sum_{i=1}^{n} x_{i}^{3}=y^{3 k+2}$ has infinitely many solutions in the positive integers x_{i}, y.
$5 u$ is a real parameter such that $0<u<1$.
For $0 \leq x \leq u, f(x)=0$.
For $u \leq x \leq n, f(x)=1-(\sqrt{u x}+\sqrt{(1-u)(1-x)})^{2}$.
The sequence $\left\{u_{n}\right\}$ is define recursively as follows: $u_{1}=f(1)$ and $u_{n}=f\left(u_{n-1}\right) \forall n \in \mathbb{N}, n \neq 1$. Show that there exists a positive integer k for which $u_{k}=0$.

