

AoPS Community

Canada National Olympiad 1996

www.artofproblemsolving.com/community/c5041 by shobber

1 If α , β , and γ are the roots of $x^3 - x - 1 = 0$, compute $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$.

2 Find all real solutions to the following system of equations. Carefully justify your answer.

$$\begin{cases} \frac{4x^2}{1+4x^2} = y\\ \frac{4y^2}{1+4y^2} = z\\ \frac{4z^2}{1+4z^2} = x \end{cases}$$

3 We denote an arbitrary permutation of the integers 1, 2, ..., n by $a_1, a_2, ..., a_n$. Let f(n) denote the number of these permutations such that:

(1) $a_1 = 1;$

(2): $|a_i - a_{i+1}| \le 2$, $i = 1, \ldots, n-1$.

Determine whether f(1996) is divisible by 3.

- 4 Let triangle ABC be an isosceles triangle with AB = AC. Suppose that the angle bisector of its angle $\angle B$ meets the side AC at a point D and that BC = BD + AD. Determine $\angle A$.
- **5** Let r_1, r_2, \ldots, r_m be a given set of m positive rational numbers such that $\sum_{k=1}^m r_k = 1$. Define the function f by $f(n) = n \sum_{k=1}^m [r_k n]$ for each positive integer n. Determine the minimum and maximum values of f(n). Here [x] denotes the greatest integer less than or equal to x.

Act of Problem Solving is an ACS WASC Accredited School.