

AoPS Community

Canada National Olympiad 1998

www.artofproblemsolving.com/community/c5043 by shobber, Megus

1 Determine the number of real solutions *a* to the equation:

$$\left[\frac{1}{2}a\right] + \left[\frac{1}{3}a\right] + \left[\frac{1}{5}a\right] = a.$$

Here, if x is a real number, then [x] denotes the greatest integer that is less than or equal to x.

2 Find all real numbers x such that:

$$x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}$$

3 Let *n* be a natural number such that
$$n \ge 2$$
. Show that

$$\frac{1}{n+1}\left(1+\frac{1}{3}+\dots+\frac{1}{2n-1}\right) > \frac{1}{n}\left(\frac{1}{2}+\frac{1}{4}+\dots+\frac{1}{2n}\right).$$

4 Let ABC be a triangle with $\angle BAC = 40^{\circ}$ and $\angle ABC = 60^{\circ}$. Let D and E be the points lying on the sides AC and AB, respectively, such that $\angle CBD = 40^{\circ}$ and $\angle BCE = 70^{\circ}$. Let F be the point of intersection of the lines BD and CE. Show that the line AF is perpendicular to the line BC.

5 Let *m* be a positive integer. Define the sequence a_0, a_1, a_2, \cdots by $a_0 = 0, a_1 = m$, and $a_{n+1} = m^2 a_n - a_{n-1}$ for $n = 1, 2, 3, \cdots$. Prove that an ordered pair (a, b) of non-negative integers, with $a \le b$, gives a solution to the equation

$$\frac{a^2+b^2}{ab+1}=m^2$$

if and only if (a, b) is of the form (a_n, a_{n+1}) for some $n \ge 0$.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

© 2019 AoPS Incorporated

1

Art of Problem Solving is an ACS WASC Accredited School.