## AoPS Community

## Canada National Olympiad 1999

www.artofproblemsolving.com/community/c5044
by shobber, Farenhajt, frankvista, bugzpodder

1 Find all real solutions to the equation $4 x^{2}-40\lfloor x\rfloor+51=0$.
2 Let $A B C$ be an equilateral triangle of altitude 1. A circle with radius 1 and center on the same side of $A B$ as $C$ rolls along the segment $A B$. Prove that the arc of the circle that is inside the triangle always has the same length.

3 Determine all positive integers $n$ with the property that $n=(d(n))^{2}$. Here $d(n)$ denotes the number of positive divisors of $n$.

4 Suppose $a_{1}, a_{2}, \cdots, a_{8}$ are eight distinct integers from $\{1,2, \cdots, 16,17\}$. Show that there is an integer $k>0$ such that the equation $a_{i}-a_{j}=k$ has at least three different solutions.
Also, find a specific set of 7 distinct integers from $\{1,2, \ldots, 16,17\}$ such that the equation $a_{i}-a_{j}=k$ does not have three distinct solutions for any $k>0$.

5 Let $x, y$, and $z$ be non-negative real numbers satisfying $x+y+z=1$. Show that

$$
x^{2} y+y^{2} z+z^{2} x \leq \frac{4}{27}
$$

and find when equality occurs.

