AoPS Community

Cono Sur Olympiad 2016

www.artofproblemsolving.com/community/c504690
by adrian97

- Day 1

1 Let $\overline{a b c d}$ be one of the 9999 numbers $0001,0002,0003, \ldots, 9998,9999$. Let $\overline{a b c d}$ be an special number if $a b-c d$ and $a b+c d$ are perfect squares, $a b-c d$ divides $a b+c d$ and also $a b+c d$ divides $a b c d$. For example 2016 is special. Find all the $\overline{a b c d}$ special numbers.
Note: If $\overline{a b c d}=0206$, then $a b=02$ and $c d=06$.
2 For every $k=1,2, \ldots$ let s_{k} be the number of pairs (x, y) satisfying the equation $k x+(k+1) y=$ $1001-k$ with x, y non-negative integers. Find $s_{1}+s_{2}+\cdots+s_{200}$.

3 There are 2016 positions marked around a circle, with a token on one of them. A legitimate move is to move the token either 1 position or 4 positions from its location, clockwise. The restriction is that the token can not occupy the same position more than once. Players A and B take turns making moves. Player A has the first move. The first player who cannot make a legitimate move loses. Determine which of the two players has a winning strategy.

- Day 2

4 Let $S(n)$ be the sum of the digits of the positive integer n. Find all n such that $S(n)(S(n)-1)=$ $n-1$.
$5 \quad$ Let $A B C$ be a triangle inscribed on a circle with center O. Let D and E be points on the sides $A B$ and $B C$,respectively, such that $A D=D E=E C$. Let X be the intersection of the angle bisectors of $\angle A D E$ and $\angle D E C$.
If $X \neq O$, show that, the lines $O X$ and $D E$ are perpendicular.
6 We say that three different integers are friendly if one of them divides the product of the other two. Let n be a positive integer.
a) Show that, between n^{2} and $n^{2}+n$, exclusive, does not exist any triplet of friendly numbers.
b) Determine if for each n exists a triplet of friendly numbers between n^{2} and $n^{2}+n+3 \sqrt{n}$, exclusive.

