

AoPS Community

2016 Cono Sur Olympiad

Cono Sur Olympiad 2016

www.artofproblemsolving.com/community/c504690 by adrian97

-	Day 1
1	Let \overline{abcd} be one of the 9999 numbers $0001, 0002, 0003, \dots, 9998, 9999$. Let \overline{abcd} be an <i>special</i> number if $ab - cd$ and $ab + cd$ are perfect squares, $ab - cd$ divides $ab + cd$ and also $ab + cd$ divides $abcd$. For example 2016 is special. Find all the \overline{abcd} special numbers. Note: If $\overline{abcd} = 0206$, then $ab = 02$ and $cd = 06$.
2	For every $k = 1, 2,$ let s_k be the number of pairs (x, y) satisfying the equation $kx + (k+1)y = 1001 - k$ with x , y non-negative integers. Find $s_1 + s_2 + \cdots + s_{200}$.
3	There are 2016 positions marked around a circle, with a token on one of them. A legitimate move is to move the token either 1 position or 4 positions from its location, clockwise. The restriction is that the token can not occupy the same position more than once. Players A and B take turns making moves. Player A has the first move. The first player who cannot make a legitimate move loses. Determine which of the two players has a winning strategy.
-	Day 2
4	Let $S(n)$ be the sum of the digits of the positive integer n . Find all n such that $S(n)(S(n)-1) = n-1$.
5	Let <i>ABC</i> be a triangle inscribed on a circle with center <i>O</i> . Let <i>D</i> and <i>E</i> be points on the sides <i>AB</i> and <i>BC</i> ,respectively, such that $AD = DE = EC$. Let <i>X</i> be the intersection of the angle bisectors of $\angle ADE$ and $\angle DEC$. If $X \neq O$, show that, the lines <i>OX</i> and <i>DE</i> are perpendicular.
6	We say that three different integers are <i>friendly</i> if one of them divides the product of the other two. Let n be a positive integer.
	a) Show that, between n^2 and $n^2 + n$, exclusive, does not exist any triplet of friendly numbers.
	b) Determine if for each n exists a triplet of friendly numbers between n^2 and $n^2 + n + 3\sqrt{n}$, exclusive.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱