AoPS Community

Canada National Olympiad 2002

www.artofproblemsolving.com/community/c5047
by shobber

1 Let S be a subset of $\{1,2, \ldots, 9\}$, such that the sums formed by adding each unordered pair of distinct numbers from S are all different. For example, the subset $\{1,2,3,5\}$ has this property, but $\{1,2,3,4,5\}$ does not, since the pairs $\{1,4\}$ and $\{2,3\}$ have the same sum, namely 5 .

What is the maximum number of elements that S can contain?
2 Call a positive integer n practical if every positive integer less than or equal to n can be written as the sum of distinct divisors of n.

For example, the divisors of 6 are 1,2,3, and 6 . Since

$$
1=1, \quad 2=2, \quad 3=3, \quad 4=1+3, \quad 5=2+3, \quad 6=6,
$$

we see that 6 is practical.
Prove that the product of two practical numbers is also practical.
3 Prove that for all positive real numbers a, b, and c,

$$
\frac{a^{3}}{b c}+\frac{b^{3}}{c a}+\frac{c^{3}}{a b} \geq a+b+c
$$

and determine when equality occurs.
$4 \quad$ Let Γ be a circle with radius r. Let A and B be distinct points on Γ such that $A B<\sqrt{3} r$. Let the circle with centre B and radius $A B$ meet Γ again at C. Let P be the point inside Γ such that triangle $A B P$ is equilateral. Finally, let the line $C P$ meet Γ again at Q.

Prove that $P Q=r$.
$5 \quad$ Let $\mathbb{N}=\{0,1,2, \ldots\}$. Determine all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
x f(y)+y f(x)=(x+y) f\left(x^{2}+y^{2}\right)
$$

for all x and y in \mathbb{N}.

