AoPS Community

Canada National Olympiad 2003

www.artofproblemsolving.com/community/c5048
by shobber, AwesomeToad

1 Consider a standard twelve-hour clock whose hour and minute hands move continuously. Let m be an integer, with $1 \leq m \leq 720$. At precisely m minutes after 12:00, the angle made by the hour hand and minute hand is exactly 1°.
Determine all possible values of m.
2 Find the last three digits of the number $2003^{2002^{2001}}$.
3 Find all real positive solutions (if any) to

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}=x+y+z, \text { and } \\
& x^{2}+y^{2}+z^{2}=x y z
\end{aligned}
$$

4 Prove that when three circles share the same chord $A B$, every line through A different from $A B$ determines the same ratio $X Y: Y Z$, where X is an arbitrary point different from B on the rst circle while Y and Z are the points where AX intersects the other two circles (labeled so that Y is between X and Z).
$5 \quad$ Let S be a set of n points in the plane such that any two points of S are at least 1 unit apart. Prove there is a subset T of S with at least $\frac{n}{7}$ points such that any two points of T are at least $\sqrt{3}$ units apart.

