AoPS Community

Canada National Olympiad 2004

www.artofproblemsolving.com/community/c5049
by worthawholebean, moldovan

1 Find all ordered triples (x, y, z) of real numbers which satisfy the following system of equations:

$$
\left\{\begin{array}{l}
x y=z-x-y \\
x z=y-x-z \\
y z=x-y-z
\end{array}\right.
$$

2 How many ways can 8 mutually non-attacking rooks be placed on the 9×9 chessboard (shown here) so that all 8 rooks are on squares of the same color?
(Two rooks are said to be attacking each other if they are placed in the same row or column of the board.)

3 Let A, B, C, D be four points on a circle (occurring in clockwise order), with $A B<A D$ and $B C>C D$. The bisectors of angles $B A D$ and $B C D$ meet the circle at X and Y, respectively. Consider the hexagon formed by these six points on the circle. If four of the six sides of the hexagon have equal length, prove that $B D$ must be a diameter of the circle.

4 Let p be an odd prime. Prove that:

$$
\sum_{k=1}^{p-1} k^{2 p-1} \equiv \frac{p(p+1)}{2} \quad\left(\bmod p^{2}\right)
$$

$5 \quad$ Let T be the set of all positive integer divisors of 2004^{100}. What is the largest possible number of elements of a subset S of T such that no element in S divides any other element in S ?

