AoPS Community

Canada National Olympiad 2005

www.artofproblemsolving.com/community/c5050
by moldovan

1 An equilateral triangle of side length n is divided into unit triangles. Let $f(n)$ be the number of paths from the triangle in the top row to the middle triangle in the bottom row, such that adjacent triangles in a path share a common edge and the path never travels up (from a lower row to a higher row) or revisits a triangle. An example is shown on the picture for $n=5$. Determine the value of $f(2005)$.

2 Let (a, b, c) be a Pythagorean triple, i.e. a triplet of positive integers with $a^{2}+b^{2}=c^{2}$.
a) Prove that $\left(\frac{c}{a}+\frac{c}{b}\right)^{2}>8$.b) Prove that there are no integer n and Pythagorean triple (a, b, c) satisfying $\left(\frac{c}{a}+\frac{c}{b}\right)^{2}=n$.

3 Let S be a set of $n \geq 3$ points in the interior of a circle. a) Show that there are three distinct points $a, b, c \in S$ and three distinct points A, B, C on the circle such that a is (strictly) closer to A than any other point in S, b is closer to B than any other point in S and c is closer to C than any other point in $S . b$) Show that for no value of n can four such points in S (and corresponding points on the circle) be guaranteed.

4 Let $A B C$ be a triangle with circumradius R, perimeter P and area K. Determine the maximum value of: $\frac{K P}{R^{3}}$.

5 Let's say that an ordered triple of positive integers (a, b, c) is [i] n-powerful[/i] if $a \leq b \leq c, \operatorname{gcd}(a, b, c)=$ 1 and $a^{n}+b^{n}+c^{n}$ is divisible by $a+b+c$. For example, $(1,2,2)$ is 5 -powerful. a) Determine all ordered triples (if any) which are n-powerful for all $n \geq 1 . b$) Determine all ordered triples (if any) which are 2004-powerful and 2005-powerful, but not 2007-powerful.

